R

.

Issue Number 66 March/April 1994 US$4.00

Small System Support
Z-System Corner
DR S-100
Real Computing

Support Groups

PC/XT Corner
Little Circuits
Connecting IDE Drives
Multiprocessing Part I1I
Centerfold - Mr. Kaypro

The Computer Corner

ISSN # 0748-9331 TCJ - For Having Fun With Any Computer!

OSXXX COMPUTER

PRODUCTS From
Peripheral Technology

§ 68000 System Boards with 4 Serial/
2 Parallel Ports, FDC, and RTC.
PT68K4-16 with 1MB $299.00
PT68K2-10 w/ 1MB (Used) $149.00

- REX Operating System Included

0S9 V2.4 Operating System $299.00
| With C, Editor, Assembler/Linker
SCULPTOR V1.14:6 for Business
Software Development - requires any
version of OS9/68K. $79.00

Qther 68XXX products available!
1480 Terrell Mill Rd. #870
Marietta, GA 30067
404/973-2156

{ Aminor glitch has shown up in the firmware, and you can't find the original

Crogs-Assemblers aiowsssson
Iml.llators as low as $100.00
Cross-Disassemblers . ows 100
DeveloPer Packages

as low as $200.00(a $50.00 Savings,
A New Project

Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get It To Market--FAST
Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!

source program. Qur line of disassemblers can heip you re-create the
original assembly language source.
Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.
Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families {with
more in development):

ntel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Matorola 68HC11 Motoroia 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog Z80 SC 800

N
Hitachi HD64180 Motorola 680008 Mottg)rola 68010 Intet 8B0C196
e Al products require an IBM PC or compatible. '

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develog)ment Products Group
716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606

WpO
(804) 873-1947 FAX: (804)873-2154

TN 0 LT | -

Joumey with us to discover the shortest path between
| programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, itcanofferacomplete development systeminterms
of compiler, editor, and assembler, aswell asaninterpretive mode
to enhance debugging, profiling, and tracing.

As an “open” language, Forth lets you build new control-flow
structures, and other compiler-oriented extensions that closed
languages do not.

Forth Dimensions is the magazine to help you along this
journey. Itisone of the benefits you receive asamember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,and annual FORML conferences are
alsosupported by FIG. To receive a mail-order catalogof Forth
literature and disks, call 510-89-FORTH or write to:
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.
Membership dues begin at $40 for the U.S.A. and Canada.

- Student rates begin at $18 (with valid student 1.D.).

GEnie is a trademark of General Electric.

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

. Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS "zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 (pw=DDT)
MABOS on PC-Pursuit

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Dave Baldwin
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright ® 1993
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank. Send subscription, renewals,
address changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overiooked.

Apple 11, 11+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, inc. dBase, dBASE I, dBASE Ill, dBASE I}
Plus, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Wi , Word;, Mi ft. WordStar, MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion. 280, Z280; Ziiog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally ack dedged in each o X

TC

The Computer Journal
Issue Number 66 March/April 1994

Editor's Comments...................... R
Reader to Reader........ccccecerremrierennnnee .
PCIXT Cornerceeueceerrrrnennns. U [|

Day-Old Computing.
By Frank Sergeant.

Z-Systems COMMEer.......ccceerriccccmmneneneeeernerreeereeeesrssssnes 14
Last part of Failsafe Scripts in 4DOS.

By Jay Sage.

Real Computingcccceeenn...... vesssssssssnenennennns S k.

TCP/IP and OSI explained.
By Rick Rodman.

Dr. S-100 ...t icccrrrreers e srne e e s ranaeas 22
Spring Letters.
By Herb R. Johnson.

Center Fold.................. ceennaaeseees SN —1
The Advent Decoder Board and Mr. Kaypro.

By Charles Stafford.

Connecting IDE Drives S S e 29

Last installment explaing IDE interface.
By Tilmann Reh.

Small System Support............. crrererenes ceesssrennnaas ceones 34
'C' and 6800/6809 programs.
By Ronald W. Anderson.

Multiprocessing for the Impoverished.................... 38
New improved 6809 CPU board.
By Brad Rodriguez.

Little Circuits......ccceecereerennnne terrestersssseessssrassernnsrenns ... 44

Battery Backup.
By Dave Baldwin.

Support Groups for the Classics cerenernereeeeeenns 46
Support groups directory.

By JW Weaver.

The Computer Corner.......... veenrnnan U . |
By Bill Kibler.

EDITOR'S COMMENTS

Welcome to issue 66, our eleventh year.
This issue has regulars, specials, and hot
items as usual. All this to support the
exploding (well growing at least) field of
collectible computers.

We start this issue with a bag full of
reader to reader comments. We get sev-
eral reports on choosing a language, some
languages that people have had experi-
ence with, a few comments on the ZX81
article, and a request for help. This group
of letters went over on pages, but it will
be nothing like next issue, where I will
attempt to catch up on some very inter-
esting letters that have not been printed
due simply to lack of space. Several of
TCrs writers are taking a break, and
with that I am going to take the chance
to fill the void with our readers pearly
words of wisdom (and a few complaints).

Next on the list of must reads is Frank
Sergeant and his PC/XT corner. Frank
is still gearing up for answering your
letters about the old machines, and thus
takes this chance to talk about an old
project of his (a cheap PLD program-
mer) by explaining what Programmable
Logic Devices are.

Jay Sage concludes his Failsafe Scripts
topic next. Jay’s work has doubled, not
unlike many of us, and he has decided to
cut his writing schedule down from a
regular series to hitting special topics as
time permits. Remember that Jay still
can be reached if needed and if you send
him letters, we will be printing those
and his responses in the reader to reader
section.

Next on deck is Rick Rodman and his
status report on TCP/IP for small sys-
tems. Rick says it should be working by
the time you get this issue! We added a
little explanation to help fill in those
gaps of understanding what OSI and all
those layers amount to (a non-editable
cake if you ask me...).

Our next bite of information is the con-
clusion from Tilmann Reh of his IDE
interface article series. Now there is still
some comments to be made later about
actual BIOS implementations and such,
but for now you have enough informa-
tion to start trying it yourself. As you will
see others have some hot IDE informa-
tion that will help fill in the gaps that
might still exist.

This issues centerfold is two fold (pun
is..well..), we get some schematics dear
to many Kaypro users, the Advent adapter
board, and Chuck Stafford, Mr. Kaypro,
gets center billing. Chuck starts a multi
part article on building your own Advent
decoder board. This is a good first time
construction project with many options
to be explored and skills to be developed.

Speaking of building, Brad Rodriguez
gives us his updated 6809 multiproces-
sor I board. This improved version cor-
rects a few minor problems, and...Well,
Brad explains all the why and wherefores
in his article.

Dave Baldwin is becoming a regular with
his tips and circuits. This time he ex-
plains battery backups and other power-
ful topics (now how is that for a charged
up pun...).

Ron Anderson takes a few stabs at C,
and then answers some questions about
6809 software. He concludes with a few
remarks about old systems and some
explanations that may have been over-
looked by beginners.

Herb Johnson answers the SPRING mail
bag, but don’t bounce too high or you’ll
miss the comments about a single chip
IDE S-100 project. I have seen the early
draft of Claude Palm’s article about his
work, and it all should be in the next
issue (including schematic). Imagine, 240
megs of hard drive on a single S-100
card!

Our Support group listing has a few new
entries as JW takes time to repair his
broken Kaypro. He promises to be back
next time and fill us in on what happen
and how he resurrected the beast.

For all those who said what is a PLC
(and there were many, very very many
at that!) I present a quick explanation of
PLC concepts with promises of more.
Actually, I will be explaining all to the
local Forth group, and hopefully have
some Forth code next month.

Life at 7CJ has been hectic the last few
months. The holidays turned out to be a
time hog and not a time off. Thus I must
apologize to any would be writers and
some readers as well for falling behind
on the paper work end of things.

Since 1 attempt to get 7CJ out on time
each issue, it takes precedents over all
else. That means phone calls, letters,
and E-Mail get set aside often. I have
some options to be explored down the
line, but alas nothing will happen to
improve things for the next few issues.

So if you have sent in orders for back
issues or know someone waiting for a
trial issue, please explain and under-
stand that you will get your request an-
swered, it just might take awhile.

If your wondering what happened to
slow things down around here, how about
this, three birthdays, wedding anniver-
sary, valentines day, all in the first three
weeks of February. Now if that’s not
enough how about a five year old son,
still not convinced, try ten Llamas on
ten acres. Let’s go big and change jobs
too. One last topper, TC.J was only three
days late to the printer (who by the way
moved as well)!

So despite all the odds, here is number

66 for your enjoyment. Happy Hobby
Hacking! Bill Kibler.

The Computer Journal / #66

READER to READER

Bill...

It seems I am destined to embarrass
myself publicly! Just two weeks before
TCJ #65 arrived, I received a brand new
catalog from Jameco Electronics. Sur-
prise! They’ve added _more_ compo-
nents -- over 50 pages worth -- and now
have _no_minimum_order_! It’s the
‘‘February-April 1994°’ catalog...which
may hint at catalogs more than once a
year. I've always had good dealings
with Jameco; only their shrinking in-
ventory and rising minimum order put
me off. Happy days are here again!
Jameco Electronics, 1355 Shoreway
Road, Belmont, CA, 94002-4100, phone
(415) 592-8097.

I also followed up some ads in Nuts &
Volts, and received a flyer from Debco
Electronics, 4025 Edwards Road, Cin-
cinnati, OH, 45209, phone (513) 531-
4499, orders (800) 423-4499. They’'ve
got a good selection of logic, linear, and
microprocessor ICs, plus various other
parts, at competitive prices. No mini-
mum order! 1bought some TTL ICs and
delivery was prompt.

I'm glad to hear (from 7CJ #65) that
some distributors are taking small or-
ders. I'd heard before that Dallas Semi-
conductor -- smart people! -- were tak-
ing orders from individuals. Now that
Maxim is doing likewise, and in view of
Dave Baldwin’s excellent article on re-
set circuits, let me highly recommend
the MAX690 reset circuit. I believe it’s
comparable to the TL7705, and prob-
ably more easily obtained. (We fixed a
lot of problems with MAX690’s.)

Regards,
Brad Rodriguez

The Computer Journal / #66

Thanks Brad. Got a few others who com-
mented on how ‘‘hobby’’ computing is
coming back in style and with it the need
Jfor selling again to the little people like
us. Thanks. Bill.

Hello, and thanks for the comp. copy of
TCJ.

I’'m impressed with your editorial qual-
ity. I noticed that you would be issuing
a special on the ZX-81. As a former
member of a timex/sinclair user group, I
thought you might be interested in the
following info:

One support group still functioning in
support of the ZX-81, along with the
1000, 2068, and QL, is L.1.S.T. (Long
Island Sinclair Timex, which also in-
cludes NYTSE, a group which formerly
met in New York City. The group has
public-domain cassette tapes for the vari-
ous machines, and has assembled two
volumes of technical data, program list-
ings, etc., for the ZX-81. The group
may be contacted c/o Mr. Harvey Rait; 5
Peri Lane; Valley Stream, NY 11581.
The group meets monthly on Long Is-
land and publishes a newsletter.

Has TCJ considered regular support for
the Timex and Sinclair machines? There
are still quite a few of them out here (this
message comes via a QL.)

Another message on another topic to
follow.

Thanks Stoney for that note. Yes I heard
about LIST a few days after sending 65
to the printer. I heard about QL’s and
always wanted to get one, but never saw
where or how to do it. How did you get

yours and how well does it work? Since
TCJ supports all old machines, I guess
you could say we support it, but were
really trying to teach people how fto do
their own support. Thanks for writing.
Bill Kibler.

Dear Mr. Kibler,

Thank you for printing my letter in Issue
64. After reading the other letters about
Small-C 1 decided I had a few more
things to say.

The choice of a ‘standard’ language for
TCJ to use is a difficult decision. Not
because there are so many good choices,
but because there aren’t any good
choices.

There are only a few languages that could
be considered for a magazine devoted to
small systems (assuming nobody wants
to create yet another language), assem-
bler, Basic, C, Compiled Basic, Forth,
Macro Assembler, Micro C, Pascal,
Small-C, Structured Basic. I'll discuss
each of them in turn. I'll also discuss
compilers, interpreters, and translators.
In my previous letter I discussed output-
ting P-Codes instead of assembly so that
a single compiler could be used on all
machines. I won’t discuss that further
here.

Assembly isn’t really much of an option.
There are simply too many different
CPU’s. If there were just two or three
different CPU’s then maybe. However,
TCJ supports ALL old computers, to
some degree or other.

Basic. Yeah, right. And I've got some
ocean front property in Kansas I’ll sell
you. Cheap. I suppose it could be done,

but it wouldn’t be pleasant. There are
many variations of Basic, but most of
them are similar and have similar flaws.
That’s to be expected since one company
wrote most of them; Microsoft. Basic is
slow, it.... Well, the old saying ‘Basic
and Cobol cause brain damage’ comes to
mind. It is however, the most widely
available language on the old comput-
ers.

C. ANSI C and C++ are out of the ques-
tion. They are too large. You’d have to
stick with K&R. Most computers have C
compilers or at least cross compilers. A
full K&R C compiler is fairly large. The
6809 OS9 C compiler for the Color
Computer is over 64K. It can be divided
into modules, like is done with 6809
0S89 C (see my letter in issue 64). I've
heard that the old PCC compiler used to
be publicly available. This was ‘the’ of-
ficial C implementation back when ‘they’
were practically giving C and Unix away
just for the publicity. I don’t know what
its status is now. Probably locked in a
vault somewhere.

Compiled basic could be somewhat use-
ful. It wouldn’t have to be a full basic,
just a subset. Simple Basic compilers
can be fairly small, and written in any
language available. Still though, it would
be Basic.

Forth has been implemented on just about
every computer in existence. It’s small
reasonably fast, and extensible. It’s also
hard to learn. I've spent a year labori-
ously implementing a 6809 Forth for
089 in assembler, and I still haven’t
been able to get the knack of Forthing,
Of course, in all honesty, I haven’t spent
as much time trying to learn Forth as [
did C or Pascal. I've had other things to
do. Most TCJers are going to want a
language they already know. I certainly
would. Also, algorithms aren’t as ‘obvi-
ous’ when written in Forth as compared
to C or Pascal. Then there’s the problem
of a standard Forth. The saying ‘If you’ve
seen one Forth, then you’ve seen.... one
forth’ comes to mind. Forth 83 would be
the logical choice to standardize on, but
some are still using Fig-Forth simply
because it’s readily available. ANSI Forth

is still in the future and will be several
years before its out.

Macro Assembler would be interesting.
Given a decent macro language you could
come up with about any type of language
you want. There are two catches thought.
One is the phrase *‘Given a decent macro
language’. The other is trying to find a
macro assembler in source code. I've
looked for six months and haven’t been
able to find one for any processor. I
suppose you could use a macro prepro-
cessor of some sort. <shrug> Not really
practical, I just thought it was a novel
idea.

Micro C is a C subset written by Dave
Dunfield in Canada. I think his current
version is 3.0 and contains structures,
typedefs, multiple pointers, multiple di-
mension arrays, etc. Almost a full C. I'm
not sure how much he sells his current
version for. He sold his previous ver-
sions at $50 for the compiler and a ge-
neric P-Code output routine. You could
also buy processor specific output rou-
tines for an additional $50. All in all, it
sounds fairly good. You've got some-
body already dedicated to small proces-
sors (Z80, 6809, 8051, etc.). And the
product is already available. The only
problem is the price. If somebody talked
to him about it, he might be willing to do
a reduced price version to TCJ subscrib-
ers, on the condition that we tell him of
bugs etc. I have not talked to him about
this and I'm not trying to obligate him.
I just thought I'd mention it as a maybe.
You could also try his old shareware
version. I picked up a copy of V1.20
from a BBS for the cost of the phone
call. It’s got full source code and docu-
mentation. Of course, it doesn’t contain
structures, typedefs, and other niceties.
Since the basic compiler package comes
with a p-code output routine, that could
allow generic ‘assembly’ and program
transfers. Even the compiler could be
distributed this way in case the target
doesn’t have a working C compiler. The
compiler is available for a large number
of CPUs, including the 8051, Z80, 6809,
8088. The only requirement is that the
CPU has a 16 bit data register that can
access the lower 8 bits, and a 16 bit
index register. Even those could be

changed some if you were willing to
keep the ‘registers’ in memory.

Pascal could be a serious choice. ISO
level O Pascal isn’t worth using (I know,
my OS9 Pascal09 is ISO level 0 with a
few MINOR extensions), but most ver-
sions add a number of extensions. The
only real problem is finding a compiler.
Since there are so many versions, some
standardization would need to be made
(such as no strings or no recursion, or no
nested procedures or some such). Many
would already have one, but some would
need one. I know of a couple in source
code, but only one is self compilable. It
is also very large, about 64K of compiled
code (it uses sets heavily throughout the
compiler.) It also generates P-Codes,
although that could be changed or
handled with assembler macros. With
some effort, It might be possible to shrink
the compiler to 32K or so, but I doubt it.
A smaller compiler would need to be
found. Of course, with source available
we could always add extensions to make
it more useful. If you could live with out
self-compilation and some other things
you could try Facilis, or even the Pascal/
S. Pascal doesn’t have the low level sup-
port that many would want, but still,
Pascal is an easily understood language
that is widely available. If we could find
a nice generic Pascal compiler in source
the we could add extensions.

I think I covered Small-C fairly com-
pletely in my letter in Issue #61.

Structured Basic overcomes many of the
problems of Basic. Of course, not all
computers have structured Basic. It’s also
still Basic. When I looked at the struc-
tured Basic (Basic09) that came with my
OS9 Level 2, my first impression was
that they tried to make Basic look like
Pascal, and that if somebody was going
to use a Pascalish language, then they
might as well use Pascal.

As for interpreters, compilers, and trans-
lators...

An Interpretive language has many good

features. Ease of use, case of debugging,
etc. It is S-L-O-W though. Also, most

The Computer Journal / #66

interpreted languages don’t support re-
cursion well, or have parameters for the
subroutines.

Compiled languages usually have much
more power and are much more expres-
sive than interpreted languages. Of

_ course, debugging and ease of use suffer.

Also, the compiler can be rather large.
In this respect, Forth is excellent. It’s a
compiler and an interpreter and it’s small.
Of course, you have to understand Forth,
and many don’t.

A translator could bridge the gap be-
tween an understandable language and
the usefulness of Forth. Several times
I’ve thought about converting Small-C
to output Forth instead of assembly. I
never got around to it, but it was an
interesting idea. The same could be done
with Basic, Pascal, etc. The problem with
this is that you now need two levels of
languages, the translator and the Forth.
Also, it wont be as efficient as natural
(or would that be ‘un’natural?) Forth. Of
course, you can say the same thing about
any compiler as compared to native code
(assembler). This does give the users
two chances to be able to run a program.
Either using their own C or Pascal com-
pilers, or the translators and whatever
language they produce.

My suggestion would be to see if you can
find a full C compiler. If not, try a group
rate Dave Dunfield Micro C. If not, try
Pascal. If that’s unsuccessful, try for
Small-C and Pascal to Forth converters.
If that fails, you are either going to have
to put up with Forth, or forget about a
universal language for T7CJ. If you do get
a compiler, I suggest that it output P-
Code that can be translated or inter-
preted by the user. This way, porting to
a new computer would be just a matter
of writing the translator and using the
already p<ode compiled compiler. That
also allows generic ‘binaries’ to be dis-
tributed.

What every reader needs to do is send in
a note saying what they have and what
compilers are available. That way you’d
know which to lean towards. Also, if
anybody happens to know of generic,
portable compilers, translators, Forths,

The Computer Journal / #66

etc, then they should drop you a note.
That way we would know what is avail-
able to use.

Of course, having said all of that, I have
to admit that in my case it wouldn’t
make that much difference. For my CoCo
I've got a K&R C compiler, a (almost)
working Forth 83, and an ISO level 0
Pascal compiler. I can already handle
about anything you publish that I might
want to try.

Sincerely, Carey Bloodworth.

Thanks for the short letter
Carey... Actually your comments are very
much appreciated as we consider how
TCJ is to treat code examples.

After recent work on OS2 C, I must
admit a reluctance to suggest C in any
form. If Forth gets blamed for write once
coding, C then must be write never. My
experience proved that you can make
any code impossible to read after being
written. The use of Macros and proce-
dures if left uncommented (the norm)
can force you to search code, books,
and files in the elusive battle of ‘‘what
does it do and how do I talk to it???7?"’
chase. The ultimate example is the yearly
contest to put as much as possible in one
line of C code. I've seen the totally un-
readable results and would hate to be a
newcomer to computing trying to figure
it out.

By the way, Forth ANSI standard is
completed, several Forths in public do-
main do comply with the standard. I
suspect that within six months the stan-
dard issue problem of Forth will be a
thing of the past. Speaking of the past,
1 remember trying F83 (the Laxen and
Perry version) that had both a Pascal
and Basic converter. How well they work,
alas I do not remember. Also a friend of
mine is writing a C compiler in Forth (
a nasty project due to C'’s oddball way
of doing things) and hopes to be done
soon.

The overall objective is not to use only
one language at TCJ. The objective is
how to get the most educational expla-
nation of what the program is doing.
Ideally I want to develop a universal

working environment for all small sys-
tems, but that is secondary to teaching
and providing ‘‘how-to’’ information,
today.

Possibly we need to look at our problem
in a different manner, as you have so
aptly explained, the language choice is
very complex and not solvable in any
reasonable time frame. Maybe Lee
Hart’s comments will help us see a dif-
Jerent direction.

Thanks again Carey for both of your
letters. Bill Kibler.

Dear Bill,

Well, T found a house at last! The new
address is in the letterhead above. Please
update your files accordingly.

My check for $24 is enclosed for a T7CJ
subscription renewal. Keep up the good
work!

On the choice of a standard program-
ming language for TCJ: Language is
intended to promote communication.
Computer languages are designed to
communicate with computers; they are
NOT good for communicating with
people. No matter what computer lan-
guage you pick, many readers will have
trouble fully comprehending it. After all,
comments are necessary in program list-
ings because even skilled practitioner
can’t understand the code without them.
The comments form a pseudo-language
that documents what is going on for
people.

Essentially, your articles are trying to
communicate with two different audi-
ences; the computer and the reader. For
the computer, any standard language
appropriate for the platform under dis-
cussion is fine. If it compiles / assembles,
it is good; the computer understood it.
Just avoid non-standard or peculiar dia-
lects. (This is why BASIC is a bad choice;
there is no standard dialect.)

For the human-readable portion, I favor
the use of a pseudo-language, such as
ALGOL, when the goal is to illustrate an
idea or algorithm for people. It doesn’t
really matter to people if the code is

correct, as long as the comments clearly
describe the intent. I REALLY hate
trivial or meaningless comments like
“‘load accumulator’’ or ‘‘tweedledee ...
tweedledum ... around and around ...
until we’re done.”

- On your coverage of the IBM PC as a
classic computer. 7CJ seeks to teach
people. Teachers must be especially vigi-
lant in choosing good examples. But the
PC teaches...

_-that bad hardware design can be hidden
with enough megabytes and megahertz,

-that only Asians can build hardware,
-that only experts can write software,

-there is no point in learning to pro-
gram; someone will write it for you,

~copy protection, shrink-wrap warran-
ties, and selling known defective soft-
ware will make you filthy rich,

-that stealing software is preferable to
writing it,

-to spend more on advertising than prod-
uct development,

'-to use standards to block competition,
not advance the state of the art,

-that connectors should be unlabeled, and
never used for their customary purpose,

-that every program should include hard-
ware specific 1/0,

-and it’s normal for a computer to
“‘crash’” every few hours.

I don’t mind using the PC as an ex-
ample, as long as it’s explained to be a
BAD example.

If we’re going to promote old systems,
how about the MAC? For $50 or $100
you can get a single board 8 MHz 68000-
based computer with 128K to Imeg of
RAM, 64K to 128K of ROM, two serial
ports, video output, serial keyboard and
mouse inputs, dual floppy disk control-
ler, real-time clock, 256 bytes of non-

volatile RAM, and 8-bit D/A converter.
Later boards have SCSI port (but it only

takes one chip to add SCSI to older

boards). Mac boards are well designed
and built, fast, reliable, easy to mount,
and take a fraction of the power of a PC.

Here’s a project: Can one of TCJ”s 68000
gurus provide a ROMable FORTH to
replace or enhance the apple ROMs?
These boards have two ROM sockets
that accept either 32K (27256) or 64K
(27512) ROMs or EPROMs. Early Macs
had 64K of ROM (two 32K chips); later
it increased to 128K (two 64K chips).
The 128K ROMs are highly prized by
Atari and Amiga owners to make their
machines MAC compatible, so you can
often buy a Mac board with empty ROM
sockets for a song.

Suppose we burned a new pair of 26512
EPROMs, with Apple’s 64K code in the
lower half, and FORTH in the upper
half. We add a patch so at power-up you
can either run FORTH, or boot Apple’s
operating system normally. FORTH gives
us Lee Felsenstein’s dream of a hacker’s
Mac; all the power of the 68000 envi-
ronment without Apple’s repressive op-
erating system. FORTH gives you total
machine access, yet you can still use the
Apple ROM’s toolbox routines to use
the clock, mouse, keyboard, screen graph-
ics, disks, etc. Now suppose those
27512’s are flash EPROMs, so they pro-
vide non-volitile read/write storage. 32K
of FORTH can do amazing things. You
have a very powerful disk less control-
ler.

I loved the Timex/Sinclair stuff. I have
always considered it the ultimate expres-
sion of simplicity; the Zen of computer
design. A complete, working computer
in 4 chips for $100. If you think we have
progressed technologically, show me its
equivalent today!

Clive Sinclair had a genius for this kind
of work. He also built a watch, a calcu-
lator, a portable TV, and a multimeter
with the same kind of ultimate simplic-
ity and low cost. As for those who see it
as a failure; not so! Sinclair entered a
crowded market, and went from O to first
place in sales in 4 months flat. He intro-
duced millions to computers, and made

millions of dollars doing it. That rates it
as a success in my book.

Alas, the ZX81 is with us no more. But
companies are like flowers. The chips
are planted on a board. If they are of
good stock, and the market is fertile, and
is illuminated by the light of brilliant
software, it blossoms into a thing of
beauty. Then just after it blooms most
brilliantly, it dies. But like flowers, it
leaves behind the seeds for the next gen-
eration.

One has to wonder what a Sinclair com-
puter would look like today?

Yours Truly, Lee A. Hart, Robbinsdale,
MN.

I now understand why so many of my
readers keep asking for you to do ar-
ticles, Lee. Thanks for those great com-
ments and you have said it better than |
could.

Your comments on a language, made me
consider that what I have been looking
Jor is not a language as such, but really
a proper and satisfactory way of com-
menting code. Your so correct in think-
ing that if we could just comment it in
such a way that it expressed what was
going on and needed to happen, that the
actual language doesn’t matter.

This idea also falls in with many FORTH
programmers view, that FORTH is their
own private language and tools for solv-
ing problems. Whether or not anyone
uses the language is of no concern, what
is important is that the language works
and fits my personal style of program-
ming. The problem then is really how do
I comment and explain the language
such that someone else (or myself) if
needed, could convert it to another lan-
guage on say another platform(especially
since there will always be direct calls to
the hardware 1/0).

I really have learned to hate program-
mers who do not comment their code.
The worst seem to be those who are
making all those direct calls. Most likely
they don’t comment because they really
do not know what it is they are doing.
So, say nothing, or make funny com-

The Computer Journal / #66

ments, and hopefully no one will notice
you really can’t program your way out

of a paper bag....

I must confess that 1 have never seen
ALGOL (that I remember) and would
challenge you to do an article explain-
ing it for us. That article might try to
show how to comment properly (like
“load the accumulator with the base
address of table X', a bit more informa-
tive) and provide some comparisons to
other languages for the same ideas(a
comparison of C, BASIC, Forth, Assem-
bler, Pascal, and ALGOL).

Confess again I must, that I had inten-
tionally skipped over the Macs, under
the idea that they were still too expen-
sive (good hardware doesn 't drop in price
like a brick or PC) and that other 68000
machines were more available (I have
Atari STs, one cost $25). I would love to
do a series of articles on any of these
68000 based machines. For raw com-
puting power and least amount of money,
old Mac’s, Atari’s, Amiga’s, and Sun
workstations are great. Oh yes, I have a
JSew readers suggesting some articles and
projects using the old Sun 68000 work-
stations, since they too can be had for a
song. TCJ'’s official position is that any
of the older classic systems are better
learning platforms than new PC’s of any
vendor.

Your idea of the ROM in Mac's is great
and a bit like my idea of an universal
operating system for these older ma-
chines. Think about taking an old Mac
or Atari and plug in new ROMs and up
comes the system running the same pro-
grams without converting or recompiling
the code.

Yes I do know of someone just like Clive
Sinclair, who is in fact building single
chip computer systems with blinding
speed, Chuck Moore. I commented on
his newest MPU21 last issue. Chuck is
really now breaking new ground in show-
ing how the old stuff shirts and
marketeers are just wrong in which way
computing research and design should
go. Chuck get’s my Sinclair award for
keeping it simple but extremely power-

Jul.

The Computer Journal / #66

Thanks for the comments and how about
some articles on a regular basis? Your
fans await you! Thanks again. Bill.

To answer Robert Edgecombe’s letter in
TCJ #63:

Even when you run the SYSGEN/
MOVCPM from the distribution disk,
things can go wrong. I think it has got
something to do with CONFIGUR util-
ity but I’m not sure.

Anyhow, there is a fix for MOVCPM, 1
dug it up some time ago and since I was
having the same troubles on my 820-I1.
I have tried it and it works! I even im-
ported the Kaypro MOVCPM to the
XEROX, patched it, and it still ran OK.

The fix comes from the INFO-CPM di-
gest issue 29 in 1990. The source re-
mains unnamed, but we have to thank
Marc Wilson for bringing it out into the

open.
Part of Marc’s message follows:

Note that this information is specific to
a particular copy of MOVCPM. Your
patch point is almost guaranteed to NOT
be in the same place. But, in looking at
over a dozen copies of MOVCPM from
as many manufacturers, I found that:

1)The code around the patch point al-
ways looks the same (that portion is
DRP’s, not the vendor’s).

2)The patch point has always been within
80h bytes of the point specified in this
file.

Also... I did NOT write this patch. I
found it on a local BBS. Many moons
ago. It’s not my fault if you screw up
your copy of MOVCPM. Do NOT do
this on an original disk!

MOVCPM.FIX:

I recently tried to help a friend generate
a new system on my machine, using his
copy of MOVCPM, and we were greeted
with, “*SYSCHRONIZATION ERROR ™’
followed by the machine quitting. After
talking to another friend, I was informed

that the problem was caused by a serial
number mismatch between my system
and his copy of MOVCPM. My friend
further stated that there was *“NO WAY”’
around this protection. After pondering
the problem a while I decided to start
disassembling MOVCPM with the help
of the ‘L’ command in DDT. What
follows is the result of my efforts.

Beginning at 2C0 I found the following
code:

-L2C0

02C0 POP D
02C1 LXI D,1200
02C4 LHLD 037A
02C7 MVI C,6
02C9 LDAX D
02CA CMP M
02CB JNZ 025A
02CEINX H
02CFINX D
02D0 DCR C
02D1 JNZ 02C9

I then did the following substitutions:

-S2CB
02CB C2 00
02CC 5A 00
02CD 02 00
02CE 23 .

After the above changes do a SAVE 40
MOVCPMNU.COM and you have a
version of MOVCPM that will run on
any machine.

With the above changes under my belt I
decided to do some more poking around
in MOVCPM.COM and came up with
the following addresses that might arouse
your curiosity.

BSF, 1200, D28.
Best of Luck, A HACKER.

Actually “‘HACKER’' is a real person,
but just didn’t want his name used. So
thanks ‘‘Hacker'' for your note, and
sorry for the delay, your letter got mixed
in with some other mail.

What you are doing is *‘'NO OPing "’ out
the *‘jump on NOT ZERO"’ of the com-
pare of the six byte serial number.

MOVCPM compares the serial number
byte at a time and if any byte is not the
same, jumps to the message output rou-
tine and HALTS the system (actually 1
think it is a tight loop, but the results are
the same, a locked up system.) If you do
some looking you will find the serial
numbers and it is possible to *‘ZERO”’
them out and solve the problem as
well(most of my CP/M's have no serial
number).

Good tip and thanks again. Bill.
Dear Mr. Kibler

I wish to extend my subscription which
expires with issue 65. I also wish to
purchase 1 to 58 to bring me up to date.

Now for the meat of the matter. When
the new S-100 machines first came out
I drooled for them. Later when they be-
came ‘‘obsolete’’ I started running to
hamfests looking for one. I finally found
got my first last week. I found a Vector
Graphics and am trying to get it run-
ning. The terminal seems to want 16
Volts it ain’t getting. The hard drive
spins, the floppy spins and seems to read
a disk from my TI99-4A. I've got my
voltages and clock and everything seems
to run.

I need information as to dip switches for
the following Vector boards if you can
getit: ZCB, Bitstreamer, 64K Ram board,
Flashwriter, Floppy/hard disk control-
ler. I also need to know about the switches
on a Televideo 925.

I must applaud you on the way you are
running your magazine. Some of your
letters in May/June issue have tempted
me to write a small bit on the STD bus.
I’m slowly working on it. Can you read
a disk written on a TI 99-4A? If you
want to wire wrap it, I've got a STD
backplane I can let some one have.

Sincerely Roger Wykoff, 938 W. Outer
Drive, Oak Ridge TN 37830.

Thanks Roger for those kind words about
TCJ. First 1 would suggest talking to
Herb Johnson about your Vector boards.
It does sound to me like you might have
something as simple as a non-working

terminal or just wrong baud rates. I am
not sure about the not getting 16 volts
statement, as you do know that the regu-
lators in S-100 are on the individual
cards. That means the 12 volt bus volt-
age is typically 18 Volts.

As to the STD bus, yes I would like the
backplane myself, and I am sure that my
readers would love to hear about the
STD bus, as unlike the S-100 it is still
going strong. Chips like the 80451 and
68HCI11 are taking away a lot of STD
BUS jobs, but so many people are still
using STD products everyday, I doubt
the newer chips have any real impact on
STD BUS applications.

Again thanks and do call Herb. Bill
Kibler.

Dear Mr. Kibler;

Just received the renewal notice, about
the same time as issue 65, thanks for the
reminder.

I see that you are working with PLC’s
now. As a former boss said to me,
““Welcome to the world of REAL com-
puters”’, Which PLC’s do you ‘‘special-
ize’’ in?

Along with the check for my renewal, I
am enclosing a qualification form for
‘‘Personal Engineering & Instrumenta-
tion News’’. They usually have an ar-
ticle or two of interest every issue, a little
“‘bleeding edge” stuff in most issues.
Overall a nice balance, at least for me.

1 picked up a DecMate II CP/M machine
recently, and am learning how much I
have forgotten. Now, to find some docu-
mentation, in case it breaks.

Good luck on your new job, let me know
if you need any help in the mid-West or
South.

Yours, Bobby Yates, Jonesboro, AR.

Thanks Booby, and yes it is nice to be
back in the real computing world. I work
on Omron PLC'’s right now, and doing
mostly simple ladder stuff, with a very
complex interface to non-PLC compat-

ible 8051 systems. I have to use the
BASIC interface and that brings back
old memories of why I learned Forth - to
get away from industrial BASIC! The
PLC does things FAST, the interface
module does thing in assembly FAST,
then you must talk to the BASIC module
and everything just about stops! I sure
wish these vendors would drop their
BASIC interfaces and go to FORTH,
then I wouldn 't have to curse at them so
much.

Anyway Bobby, hope you find the
DecMate documents, and I am already
a subscriber to 'PE&I’’, and yes they
are mostly too bleeding leading edge
most of the time. Their review of CAD
and Schematic Capture programs was
very good, which is why I still like get-
ting it. Thanks for renewing and the
letter. Bill.

Dear Bill,

Thanks for sending the free issue of 7CJ.
I was surprised to see your magazine
headquarters so close to where [live -
Lincoln is tiny! Anyway, I thought there
was good information in it, especially
the section on the old ZX80 and ZX81
clone. I had hoped to see something about
these machines since I own a couple. 1
actually have a Microace computer which
was another ZX80 clone but with 2K
instead of just 1K. That was my first
computer, but I later got a ZX81 for the
extended BASIC and the non-blinking
screen.

About 4 years ago I got a hold of a Tree
Systems Pluri-Fourth chip - but I don’t
even know if it works because I could
never get the ribbon for the keyboard
back into its slot, and it eventually frayed
and became unworkable. From the same
distributor I also got another computer,
a Memotech 512, which is like a C64 but
with a Z80 microprocessor. Unfortu-
nately it is not working at the moment.
1 have a magazine called SYNC, which
was published for about 3 to 4 years and
contains numerous articles and construc-
tion projects for the ZX80/1 and Timex
computers. I want to keep the magazines
(I have every issue but one, vol 3 #2) but
I thought maybe some of your readers
might be interested in photo-copies of

The Computer Journal / #66

some of the articles, you could copy them
from me and then distribute them to
those who were interested.

One of your readers mentioned the
ASZMIC rom and offered copies - is
there any way to get an Eprom copy
from you? I don’t own an IBM or clone.
And finally, at the risk of losing all
possible assistance from you, I must say
I was hoping for more construction ar-
ticles. I don’t subscribe to any maga-
zines currently, I usually buy ones that
contain something I can build. But thanks
again for the free issue, and if your in-
terested in copying any of the SYNC
magazines give me a call or send me a
letter.

Chris Ball, Yuba City, CA.

Thanks for the offer Chris, but currently
I have my hands full producing TCJ. If
anyone contacts me I will give them
your name and address. There is a local
(Auburn) copy business I use that can do
those for a very cheap price if there isn't
one in Yuba City.

I am not sure what happened to the
ASZMIC ROM, as I did indicate a will-
ingness to copy and distribute it. I imag-
ine 1 filed away the information and
have just forgotten to get back to the
person to get it. I guess I better hunt
around and find out what happened. You
have found the main reason I didn’t like
the ZX81, the bloody ribbon cable, |
replaced one with wires, and better yet
a new keyboard!

I am trying to get more construction
articles but it isn 't easy these days. Those
who are building are so busy they don’t
have time to write. I have actually had
several offers, but the writers just don't
get the time to put it down on paper. 1
will keep trying! Thanks again. Bill
Kibler.

Dear Mr. Kibler!

My name is Alex Shakhnovich, and I
am a computer hobbyist from the former
Soviet Union. Now I live and work in
the States (I am a chemist). I am in love
with 8080 and Z80-based machines since
1984, recreating them, writing my own

The Computer Journal / #66

software, etc. Right now I am about to
finish the construction of my third ma-
chine, that combines Sinclair-128 and
SHARP MZ-700 (MZ-100 and MZ-800
are not probably know in the USA, but
are quite popular in Russia because of
good design and easy upgradability). By
the way, lot of software, including sev-
eral disk operation systems and a lot of
applications has already been written by
Russian programmers. I can share the
information I have with other Z80-hob-
byists. In exchange I need original
Sinclair/Times software, and schemat-
ics/technical manuals for the computer
and periperhals. So if you know some
crazy people, doing the same things that
I do, can you please give them my ad-
dress? Thank you.

Alex Shakhnovich, 10001 Katelyn DR.
Charlotte, NC 28269,
SHAKHNOVICH@A 1. malard.sandoz.com.

Ok Alex, I think I just gave your name to
a few people who are interested in work-
ing with 2Z80’s, all my subscribers. Hope
the over load will not be too much for
you.

I have been seeing a lot of information
from Russian programmers lately, mostly
Jfrom Forth Interest Group (FIG). Seems
computing hardware was a bit limited,
so your programmers had to be very
innovative. That made Forth their num-
ber one language.

Since you said you are doing Z80
projects, how about some articles, espe-
cially the construction side of what you
have been doing. I wouldn't even mind
an article on the Sharp machines.

Well keep up the good work and wel-
come to the land of fun and plentiful Z80
machines. Bill Kibler.

Dear Sirs,

HELP! I have this here monstrocious
AM-Varityper 3510 phototypesetter (ad-
vertised in 7C.J) which uses 8 inch HARD
SECTORED disks.

Continued on Page 50.

Articles Nededed

We need articles on subjects that
are of interests to our readers. Those
mterests now:span: small and older

CIS.

The sub_]ect matter of mterest .
mostly those which explain and
teach readers how to perform: mter—
mediate and advanced improve-
ments and modxﬁcatnons to their
systems.

All of TCJ's readers are not inter-
mediate in skill, many are: begin-
ners. Articles need totake any reader
of any skill level through your
project, as if they were begining on
this: subject for the first time.

Areas of current interest are using
older and obsolete systems for new
embedded control situations.

Embedding operations in ROM and
running the entire operations for
remote sensing over a telephone line
would be a great article of interest
to:our readers.

First hand reports on the history of
early and classic systems is always
a topic which our readers enjoy.

Projects -which use surplus parts
available from current vendors;
showing how to debug and develop
the needed knowledge of the used
system, is:something of interest to
our readers and advertizers as well.

Short reports on projects: that are
currently under-way, belong in our
Support-Groups:section, where let-
ting others know: of what:is being
done has become a major focus.

Send your ietters to:
The Computer Journal

P.O. Box:535
Lincoln, CA 95648-0535

PC/XT Corner
by Frank Sergeant

'‘Day-Old Computing

Old PCs, Programmable Logic, XYZ
Tables, and 68HC11

Introduction

Since the theme of this column is related
to old PC/XT machines, I feel obligated
to say a few words about them. I'll do
that then jump right to a hodge-podge of
topics that have been cluttering my brain.

XT Motherboard

I wanted an old XT motherboard to ex-
periment with, as I have discussed put-
ting Forth in ROM or setting up two-
way communication using just the key-
board connector. Since I talked to you
last, I bought one XT motherboard sight
unseen mail order for about $15. This
was a mistake. Arriving with No RAM
was bad enough, but it didn’t even have
a BIOS ROM or CPU. I should have
spent another $30 to $50 to buy an old
‘386SX motherboard instead.

Reat Old PCs

All is not lost, however. We dug out
some original PCs to use in the Small
Scale Computer Systems lab where I
teach. These aren’t even XTs. Some
have 256K and some 512K of RAM, one
or two working floppies, a monochrome
card and monitor and parallel port, no
serial port. Suddenly I’m surrounded by
old PCs. No one wants them. Ieven get
to put one on my desk in the TA (teach-
ing assistant) office. Wow! It takes an
hour just to boot from a floppy (I'm
exaggerating). By the time the date/
time prompt appears I forget what I
wanted to do with it. Oh, I remember.
We are using them as terminals to talk

10

to little 68HC11 boards we are building.
For that we need serial ports. We bought
some serial cards for about $7 each that
didn’t seem to work.

Hoist by My Own Petard

For years I've been using and recom-
mending a quick and dirty serial inter-
face for the PC. Technically, it violates
the RS232 specs, but has always worked
fine in practice. The idea is to use CMOS
hex inverters to shift between the levels
needed by the “HC11 (5 volts = “*1°” bit,
0 volts = ““0”” bit) and the levels from
the PC’s serial port (about +12 volts =
‘0’ bit and about -12 volts = “*1"” bit).
The inverter’s 5 volt output makes a
satisfactory RS232 *‘0’’ bit, and, al-
though the inverter’s O volt output is 3
volts too high for a legitimate ‘“1°’ bit,
it worked on all serial cards I've tried.
Until, we got these $7 serial cards. These
cards work just fine if you give ‘em real
RS232 levels, but they DONOT WORK
with my cheap interface. I've finally
been bit by taking a short cut. Let that
be a lesson to me. Meanwhile, I took a
few of my own serial cards to the lab.
They work just fine with my cheap inter-
face.

PC’s Keyboard Interface is Bi-direc-
tional

I wouldn’t have believed it if I hadn’t
seen the schematic. (Bill was kind enough
to send me a schematic.) Even then I
didn’t believe it. 1 got out two more
schematics. They all agree. Generally,
the keyboard runs the interface, toggling
the clock and data lines. But, these lines
are “‘wire-OR’’ with pull-up resistors on
them and open-collector drivers attached.
Either end can pull those lines low. This
may turn out to be our simplest way of

talking to a bare board PC without hav-
ing to add any cards to it at all. I’ll let
you know when I've had a chance to
actually try this out.

Programmable Logic Devices (PLDs)

Anyone can make a friend, but only AMD
can make a PAL (PAL is a trademark of
AMD).

We are surrounded by programmable
logic. Much of it is very inexpensive. In
a previous article, I mentioned the pos-
sibility of introducing it to the computer
architecture labs I teach at SWT (South-
west Texas State University). I'd like
my students to use it because it saves
chips compared to standard TTL and
might let them do more work at the logic
level if they had less physical wiring to
do. It might also help them get jobs in
the “‘real world.”” But, I worried PLDs
would hide too much inside a single
chip. Students might do better if they
could probe the connections between
standard TTL chips. One reader thought
bringing internal logic points out to spare
pins on the PLD would solve this prob-
lem. My compromise last semester was
to demonstrate AMD’s PLD compiler
program PALASM by entering the equa-
tions and burning a PAL or two for
them. Other than that, they used stan-
dard TTL. I’'m planning to do about the
same this semester.

Even if most of my students didn’t learn
much about PLDs, I had a lot of fun
playing with them. They are easy to
work with. The only real problem is the

The Computer Journal / #66

cost of the PLD programmer, and I think
1 am getting closer to a solution to that.

What is a PLD?

All sorts of things can be called PLDs,
including microcomputers (since they
can be programmed to implement logic
functions) and EPROMs. Generally,
though, the term PLD refers to a pro-
grammable chip that has groups of AND
gates feeding into OR gates. Each OR
output is connected to an output pin,
sometimes directly, and sometimes
through a flip-flop and/or an inverter.
Programming consists of selectively con-
necting or not connecting various inputs
to the gates. If you can program both the
AND array and the OR array, the PLD
is called a PLA (programmable logic
array). If the AND array can be pro-
grammed but the OR array is fixed, it is
called a PAL (programmable array logic).
If the device contains flip-flops, it is said
to be “‘registered.”’

These various small PLD devices usu-
ally come in 20- or 24-pin DIPs. The
name PAL suggests the array is pro-
grammed by melting fuses, as with
PROMs. EPLD refers to PLDs with
quartz windows which are programmed
much like EPROMs (or are one-time
programmable). EEPLDs (electrically
eraseable PLDs) are programmed simi-
larly to EEPROMs. GAL stands for
Generic Array Logic and refers to an
EEPLD which can emulate most of the
fuse-based PALs. Essentially, they are
all just collections of AND, OR, and
NOT gates which can be connected as
you see fit.

Truth Table

Take any number of input variables and
fill out a truth table for an output func-
tion. Whatever the function, it can be
expressed as a number of AND gates
feeding into a single OR gate. This is
called a ‘‘sum-of-products’’ form, be-
cause the OR gate produces a Boolean
“‘sum’” and an AND gate produces a
Boolean ‘‘product.”’ For example, you
can express the exclusive-OR function
of two variables as the sum of products

The Computer Journal / #66

/A*B + A*/B, which might be expressed
in Forth as

ANOT B AND A BNOT AND
OR.

Example of a Common PLD: The
22V10

The 22V10 has 12 dedicated input pins
and 10 pins that can be either input or
output or bidirectional. The OR gate
connected to each output pin is fed by 8
to 16 AND gates. Each AND gate has
about 44 possible inputs. The PAL (such
as 22V10) directly implements the clas-
sic sum of products Boolean logic equa-
tions. Thus, each output consists of a
group of AND gates (each with many
possible inputs) feeding into a single OR
gate. The programming determines
which particular inputs will go into which
AND gates. You have no choice as to
which AND gates go into their corre-
sponding OR gate. Furthermore, the
output has a D-type flipflop which can
be used or bypassed, and the output can
be left true or inverted, or the output can
be fed back to serve as the input to some
other AND gate. It may sound compli-
cated, but it all follows directly from
converting your truth table into a sum of
products.

How to Choose the Right PLD

It doesn’t matter! They are all essen-
tially interchangeable. The important
differences are whether they are eraseable
and reprogrammable and how much
power they consume. In rare cases, speed
might be a consideration, but for most
glue-logic replacement purposes, the
slowest are fast enough. For large vol-
ume production, you might want the
“‘best’’ one. Otherwise, use whatever is
available and eraseable.

A Cheap PLD Programmer

I’ve been wrestling with the idea of build-
ing a PLD programmer. Here are my
latest thoughts. The main problem in
using PLDs is the cost of the program-
mer. It looks like $500 is about the
cheapest, and they go up from there.
Why not just stick with TTL or CMOS
standard logic chips? An extra chip or

two at $0.25 each seems like a bargain.
Besides, PLD chips are expensive. The
AMD PALCE22V10 costs perhaps $6 to
$7. Smaller PLDs are cheaper, and the
ICT PEEL 18CV8 is now available from
several distributors in the under $2.00
range. It is not entirely clear exactly
how many off-the-shelf logic chips can
be replaced by a single PLD. It depends
on your particular circuit. Evenif aPLD
could replace 20 ICs in a certain circuit,
if your circuit only needs one or two
standard TTL chips, that PLD only re-
places one or two chips!.

What’s your price? If programmers fell
to $200 would you jump on the PLD
wagon? $100? One correspondent said
we needed a $50 programmer. I've been
trying to figure out how to build one, or
a kit, and sell it cheap and still make a
little money. I’'m beginning to think
$900 for a professional, commercial pro-
grammer would be money well spent. It
is a very major project to build and sup-
port a ‘‘universal’’ programmer. There
are a Jot of devices out there, with new
ones coming along rapidly. Each device
type has its own programming specs.
Some device manufacturers do not want
to release this information unless you
are already an established programmer
vendor. Some of the programming algo-
rithms are rather complicated, requiring
super voltages at different times on up to
4 or 5 separate pins.

Even if it’s worth it, you might not have
$900 to spare. Is there a way out of this
mess? Yes. Maybe. I've been thinking
I might offer a kit for about $100 that
would program only one or two types of
PLDs (plus a bunch of EPROM types).
It might even be a ‘‘semi-kit”’ where all
you have to do is plug a chip or two into
a socket. This puts it into the price
range of an EPROM programmer, but
with the PLD bonus. This is a one-size-
fits-all approach and makes it easy to
choose which PLD to use. You choose
the only one the programmer supports!
I’'m leaning toward the ICT
PEEL22CV10 which has programming
specs I like, is electrically erasable and
reprogrammable, and is a superset of
most of the available small PLDs. [
might also support the PEEL18CVS8. I'd
also like to support something like the

11

GAL 16V8, but that hinges on obtaining
the programming specs.

But, even with a firee programmer, why
should you change over from standard
logic chips to PLDs? Because every chip
you save, also saves power, board space,
holes to be drilled, and chances of wir-
ing mistakes. Further, since the PLD is
reprogrammable, you can correct or
change your circuit without rewiring or
‘making a new circuit board.

Example: Glue Logic on a 68HCI11
Board

For example, before I started working
with the PLDs, I wire-wrapped a 68HC11
computer with 32K bytes of external
RAM. 1 used 3 glue-logic chips: a
74HCS573 latch (same as a 74HC373,
except for the pin-out), a 74HCO00 quad
2-input NAND, and a 74HC4049 hex
inverter. I suppose that is about a dollar’s
worth of chips. But, since I was wire-
wrapping, it also cost me 3 wire-wrap
sockets. They cost more than the chips.
So maybe I’m up to about $3. Plus there
is some wear and tear on me to wire it all
up and decide where to put the chips on
the perf board. I think it would have
been worth spending an extra $3 or $4 to
use a single PEEL22V10 to save the
extra work and board space. As the
number of chips which can be replaced
grows, the advantage easily swings to
the single-chip solution.

Inventory

Another benefit often attributed to PLDs
is inventory simplification. Instead of
keeping track of bunches of different
TTL and CMOS chips, we could keep a
single part in stock. Too many 7402s on
hand? Not enough 7411s? With a PLDs,
one size fits all. I’'m not sure this is very
important to us as hobbyists.

PLD Compilers

Another barrier to the use of PLDs may
be their strangeness. Exactly how do you
use them? Several chip vendors offer
free PLD design software (PLD compil-
ers). ICT (the manufacturer of PEELSs)
has APEEL, AMD has PALASM. I
think National and TI and Intel also

12

offer free PLD compilers. If you can
draw your circuit using AND and OR
and NOT gates, you can input those
circuits easily into the PLD compilers.
In PALASM, for example, if you wanted
to enter a circuit of variables A, B, and
C AND’d together and followed by an
inverter, you could say /C=A*B*C
where the slash indicates the comple-
ment (the NOT) and the asterisk indi-
cates the AND operation. PALASM
will take your raw equations and per-
form logic minimization for you. I'm
not sure if APEEL does the minimiza-
tion for you or not. Once you have
compiled your logic equation, the soft-
ware produces a ‘‘JEDEC file>” to be
downloaded to the programmer. Presto,
your PLD is programmed.

EPROMsSs are PLDs

Let us not forget that a 2K x 8 EPROM
(a 2716), which can be had for under
$1.00, is a programmable logic device.
It can generate any 8 functions of up to
11 input variables each. A $3.00 32K x
8 EPROM (a 27256) can generate any 8
functions of up to 15 input variables
each. The address lines are the logic
inputs and the data lines are the logic
outputs.

As an example, consider using a 32K x
8 EPROM as an ALU (arithmetic logic
unit) which operates on 4-bit operands.
4-bits for the first operand, 4-bits for the
second operand, plus a carry-in would
use up 9 of the 15 input lines. The other
6 input lines could choose which of 64
logic or arithmetic functions to perform.
The output could be 4-bits plus a carry-
out, plus perhaps a zero-flag, overflow-
flag, negative-flag, for a total of 8 output
bits. If speed of operation were no object,
we might see how few EPROMs it would
take to build a minimal computer for
instructional use.

MC68HC11 Microcomputers

B.G. Micro at (214) 271-5546 in Dallas
has been selling MC68HC11A1 chips in
a 52-pin PLCC package (i.e. a square,
package designed to be surface mounted)
for around $7 each. Still available? The
‘A1 has 256 bytes of on-board RAM and
256 bytes of on-board EPROM plus timer,

serial port, I/O ports, and 8 ADC (ana-
log-to-digital converter) pins.

The best price I've found for ‘HCl11s is
from Beall & Glenn Enterprises at 1-
800-874-4797. They have 68HC11A1
chips at $2.85 and 68HCI11EL1 chips at
$3.00. For a $20 order they pay ship-
ping. Otherwise, add $2.00.

Marvin Green at 821 SW 14th,
Troutdale, OR 97060 has some nice look-
ing blank printed circuit boards for
prototyping ‘HCl1s. They include a
small wire-wrap area and come with
suggested schematics. 3 blank boards
for $17. 1 have some, like their appear-
ance, but haven’t soldered one up yet.
I’'m balking slightly because I enjoy us-
ing the cute little blue ceramic resonator
(from DIGI-KEY) and Marvin’s boards
are set up for a real crystal instead.

PLCC Wire-Wrap Sockets

I had been reluctant to use PLCCs for
prototyping because of the difficulty of
connecting them, compared to using
DIPs. However, I have now tried two
different ways to connect them that work
well. Both methods use a PLCC socket,
which converts the PLCC to a pin-grid-
array style pin-out. The first way, which
I tried on a 68-pin PLCC DSP (digital
signal processing) chip, was to use a
Radio Shack perf board with separate
copper pads on each hole. I stuck the
socket into the board and soldered 30
gauge wire-wrap wire to each socket pin.
The copper pads help: you just strip about
1/8 inch of insulation from the wire,
stick it into the hole, and solder the wire,
pin, and pad all at once. The first twenty
pins or so were very frustrating, but after
that I had the hang of it and the rest went
smoothly. The trick is to pay no atten-
tion to the destination of the wires. Cut
each wire long enough so you can wrap
it anywhere on your board. You end up
with a2 mess of wires, so you need to
prepare a column and row “‘map’’ (like
a spreadsheet, row A, column 7, for
example) to make it easy to identify each
pin.

The second way, pointed out to me by a

correspondent, is to take DIP wire-wrap
machine pin sockets and cut them into

The Computer Journal / #66

single strips of the right length. Stick the strips onto the pins
of the PLCC socket. Presto. You have a wire-wrap PLCC
socket. I think it takes 6 strips of 7 pins and 2 strips of 5 pins
for the 52-pin PLCC used by the ‘HC11.

If you have $19 to spend, the CGN1001 wire-wrap module
works well. We are using them in the Small Scale lab. Just
plug in an ‘E1 or ‘Al chip and add power and ground and a
serial interface. They come with crystal, socket, jumpers to put
chip in special bootstrap mode, and pull-up resistors on the
interrupt and reset pins. CGN Company: (408) 720-1814.

Obviously, I've been fooling around with the ‘HC11 lately. I
used the ‘DO version in a 40-pin DIP for the Bare Bones
EPROM Programmer, mainly because it came in a DIP. This
makes breadboarding it in a plastic breadboard easy. Now that
I know how to wire-wrap to a PLCC, I'll probably switch over
to using the PLCC ‘Al, ‘El, etc. The latest board 1 wire-
wrapped has the ‘Al plus 32K bytes of external static RAM.
It talks to my PC over a serial line. I can download programs
to the internal or external RAM and set or read its I/O pins, all
from the comfort of Forth on the PC.

An unprogrammed PAL device has all fuses intact.

—E—]
1 F,
-
Fy L
F ouTPUT
5
-
Fa
%

PAL22V10 Logic Macrocell

o —D——

ACTIVE HIGH

ACTIVE LOW

Combinatorial I'Q

ACTIVE LOW ACTIVE MIGH

The output logic macrocell makes the PAL22V10 universal, for It
can substitule for virtually ail of the standard 24-pin PAL devices
on the market.

cuuy

Different Versions

There are some interesting differences between versions of the
‘HC11. The °El, for example, is nearly identical to the ‘Al,
except it has 512 bytes of on-board RAM instead of 256. The
‘E2 has 2K bytes of EEPROM, instead of 512 bytes. The ‘D0
has only 192 bytes of RAM, no EEPROM, and no ADC (analog
to digital converter). All the versions have a bootstrap mode
which allows you to download a program to the on-board RAM
and execute it. This is one of the nicest features of the ‘HC11.
As far as the instruction set, the ‘HC11 is essentially a 6800
with extensions.

More to Say

I’ve got more to say about XYZ tables, making printed circuit
boards, CAD packages for drawing schematics, and computing
the convex hull of a finite set of points (huh?). I'll try to say
it all next time, and even include a little about PC/XTs. As
always, I am delighted to hear from you, especially by email to
F.SERGEANT on GEnie or fsOl@academia.swt.edu on
Internet.

LOGIC DIAGRAM

v
= L
o
E
»
- $+
T H
] - |58}
T —os
- an
u
0 ’s T = L:J
m
"
I"A-TI il 10
- -
L4 r
[panr o S W b A B o 8 S 40 5 45 S 0 1D D D 8 5 VR 0 8)) e o o i D D 3
" " l‘_l’_
d
== B
” " s o
J
0
% |88]
W
w ' ! .
0 { 0
@ s T | 5N |
» - L“'
1, B——
o »
iy
un MR 18 1 N - n M LR,
o ¥

PAL22V10

Some examples to help you understand PALs.

The Computer Journal / #66

13

The Z-System Corner
By Jay Sage

Techniques for Running Unattended

Part 3: The Command Scripts

Two columns ago I presented the control
scripts 1 developed to allow my DOS
computer to run a long sequence of tasks
unattended over a lengthy period of time,
during which the computer might suffer
a power failure or have to be rebooted for
some other reason. In my most recent
column (a couple of issues back) I showed
how PMATE (ZMATE) macros could
be used to analyze the results of my
circuit simulations so that 4DOS batch
command scripts could carry out com-
plex analyses without human interven-
tion. This time I will present an ex-
ample of those command scripts. Al-
though I am describing my specific ap-

. plication to the simulation of an elec-
tronic circuit, the techniques have very
broad applicability, both in the context
of unattended computing and in other
situations.

4DOS Release §

As usual, I first have an aside. Since my
last column was written, JP Software
has released a major update to the 4DOS
command processor that makes possible
the command scripts I have described in
the past and will describe in this col-
umn. Before getting down to the main
subject, I would like to mention briefly a
few important additions in 4DOS 5 (cur-
rently at revision level 5.0D). I would
also like to reiterate my strong recom-
mendation: if you use MS-DOS at the
command prompt with any frequency,
get and install 4DOS in place of
COMMAND.COM.

14

Error Handler

One of the few areas in which ZCPR3
(Z-System) maintained a superiority over
4DOS was in error handling. Those of
you who are familiar with Z-System know
that when you enter an incorrect com-
mand in a command line, the command
processor does not just complain about
it, skip over it, and continue running
whatever comes next, possibly with cata-
strophic consequences. Instead, it brings
up a special program called an error
handler that allows the user to deal with
the problem. Most often, the error han-
dler displays the problem command and
allows the user to edit it.

Some time ago in TCJ I mentioned that
I stopped by at the offices of JP Software
in nearby Arlington, Massachusetts, and
spoke with 4DOS author Tom Rawson
about this issue. The results of that
meeting can be seen in Release 5. Now,
when the 4DOS command processor
cannot execute a command, it will in-
voke an alias with the name
UNKNOWN_CMD, passing to it the
offending command line as an argument.
This gives the user the hook needed to
perform whatever special processing is
required. I have only begun to play with
this new capability. I let
UNKNOWN_CMD pass the command
processing task off to a batch file by
defining it as ““CALL
C:MDOS\ERROR.BTM*’. The CALL
command is used to invoke it so that it
will work propetly even with errors en-
countered inside another batch file.
Without CALL, control would not re-
turn to the original batch file after
ERROR.BTM ran.

My first cut at the implementation of
ERROR.BTM (I'm sure it can be im-

proved on) is shown in Listing 1. It
assigns the bad command line to an
environment variable, displays a mes-
sage to the operator, and then allows the
operator to edit the command line, using
another nice new feature in Release 5.
The INPUT command, which gets a
string from the user and assigns it to a
specified environment variable, used to
initialize that variable to a null string.
Now it supports the ‘‘/E’’ option to al-
low editing of an existing value. Fi-
nally, the revised environment variable
is issued as a command.

The DO Loop

Another extremely handy feature added
in 4DOS Release 5 is the DO command
for use in batch scripts. It was always
possible to use IF and GOTO statements
to accomplish the same things, but the
DO command makes programs easier to
write and to read. It comes in the follow-
ing versions:

DOn

DO FOREVER

DO var = start TO end [BY n]
DO WHILE condition

DO UNTIL condition

The end of the loop is designated by the
ENDDO command. The commands
LEAVE and ITERATE allow one, re-
spectively, to leave a DO loop entirely or
begin a new iteration immediately. You
will see an example of a DO loop later
in my NOISESWP script.

My Circuit Simulation Problem
Now on to the main subject! Just this

past month I was faced with the need to
study noise margins in the new circuit I

The Computer Journal / #66

have been developing, a digital shift
register using what are called Resonant-
Tunneling Diodes or RTDs. I took an
earlier version of simulation schematic
and added a new voltage source to rep-
resent noise induced in the circuit. 1
wanted to determine the range of this
-voltage over which the circuit would
continue to function correctly for vari-
ous choices of other circuit parameters.

Since each simulation run takes consid-
erable time, I wanted the calculation to
proceed automatically, without my hav-
ing to examine the results at each step
and then decide how to change the noise
voltage. Moreover, I wanted the compu-
tations to run both day and night and in
the background while I was doing other
work. Since the computer was not going
to be left unattended, there was no need
for the fail-safe facilities I described in
previous columns, but I did want to make
use of the automated evaluation tech-
nique I described last time.

Overview of Approach

Here is how I organized a given simula-
tion run. The main circuit schematic
and the simulation specifications were
contained in a file that we will call
NOISE.CIR. To make it easy to vary
certain parameters, their values were
defined in a separate “‘include’’ file called
NOISE.PAR that the main file was told
toread in. Itis very easy, as you will see
in a moment, to have 4DOS ‘write”’
that file.

The PSPICE program was then invoked
to run the simulation, after which
PMATE (ZMATE), using a macro called
NOISE.MAT, would analyze the result
and determine whether or not the circuit
performed properly. The noise margins
were determined by running a sequence
of these simulations with different val-
ues of the noise voltage. A 4DOS script
controlled this process, adjusting the
value and determining the limiting val-
ues for proper circuit operation.

Command Script 1
I generally try to approach programming

tasks in a modular fashion. Therefore,
I first wrote a script to run a single

The Computer Journal / #66

simulation with specific values assigned
to the key parameters, including the noise
voltage. This script is shown in Listing
2. It consists mostly of lines that use the
ECHO command with output redirec-
tion into files (‘>’ to create a new file
and >>’ to add to a file). Some of the
lines generate the NOISE.PAR file that
contains PSPICE statements to define
the values for the parameters. Other
lines add lines to the text file NOISE.RES
that documents the results of the simula-
tion runs.

A few lines do something more sophis-
ticated, but I will explain only a few of
them here. One is the line that generates
the ‘. TRAN’’ statement in the PAR file.
This PSPICE command tells PSPICE to
run a transient signal analysis over a
specified time interval (second argument)
with output values printed at specified
subintervals (first argument). For my
problem I want the simulation to print
output voltages at each half cycle of the
clock and to run for a total of seven half
cycles. A half clock cycle is three times
the rise/fall time of the clock as given by
the parameter rftime.

4DOS supports not only environment
variables but also environment functions.
In this line we encounter two instances
of the powerful @EVAL environment
function, which evaluates arithmetic
expressions involving addition, subtrac-
tion, multiplication, real and integer di-
vision, and modulo operations on inte-
ger and real numbers.

Here are a few other items worth com-
menting on. In most DOS batch files,
comments use the REM (remark) com-
mand. Somewhere I read that a double
colon is a more effective way to enter
comments. It certainly makes for easier
reading. In several places in the script
an ECHOS (echo string) command is
used to echo a line without a carriage
return and linefeed so that additional
text can be added to the line. In one case
it is combined with the TIMER com-

mand to generate a line that looks like
the following:

03-06-94 Timer 1 on: 22:03:12

It shows the date and time when the
timer was started. Later a TIMER OFF
command records the ending time and
the elapsed time for the simulation run.

Command Script 2

The second command script is where
4DOS really shines. The function of this
script, called NOISESWP.BTM (noise
sweep), is to vary the value of the noise
parameter until the most positive and
negative values at which the circuit works
correctly have been determined. See
Listing 3, which contains a somewhat
abbreviated version of the script.

The script begins, as most of my scripts
do, by checking the syntax and present-
ing a syntax message if their is a prob-
lem. If that test has been passed, then
the work can begin. The SETLOCAL
command pushes the system state -- in-
cluding the values of all environment
variables and aliases and the current
subdirectory -- onto a stack. When the
batch file ends (or an ENDLLOCAL com-
mand is executed), the original state is
restored. The command-line parameters
are then assigned to named environment
variables, to make the script easier to
read and to allow the values to be modi-
fied.

Next some information is written out to
a file called NOISE.SUM that records a
summary of the final results of the simu-
lation runs. Another of 4DOS’s three
timers is used to measure the elapsed
time for a series of runs. The utility
script FORMAT.BTM takes the name of
an environment variable that holds a
numerical value and puts it in a format
occupying a specified character space
and with a specified number of digits
after the decimal point

Two environment variables -- Nneg and
Npos ~- are used to store the magnitude
(absolute value) of the largest negative
and positive noise voltage levels for

15

proper circuit operation. They are ini-
tialized to zero.

The first simulation run is made with the
noise voltage (represented by the vari-
able TSTVAL) set to zero. After all, it
makes no sense to scan for circuit mar-
- gins when the circuit doesn’t work at
all! The subroutine TEST initiates the
actual PSPICE run and sets the variable
FLAG to GOOD to indicate success or
~ BAD to indicate failure.

-Now the script gets more interesting. To
find the limiting value for the noise volt-
age to high precision but quickly, a bi-
nary search approach is followed. It is
implemented in the subroutine BINARY.
The environment variable SIGN is given
the value POS or NEG to indicate whether
positive or negative noise voltages are
being tested. The value of TSTVAL is
always positive. This seemingly overly
complex approach was adopted becausc
of a bug in 4DOS that prevents numeri-
cal comparisons in conditional tests from
working correctly with negative num-
bers (I've reported this to Tom Rawson
and hope he will issue a Release 5.00E
with a fix). BINARY is called twice,
once to get the positive limit and once to
get the negative limit. The results are
formatted to two decimal places and

" written out to the NOISE.SUM file.

The BINARY subroutine starts out with
a noise voltage step size DELTA 0f0.32,
an initial value VALUE of 0.00, and a
scan direction DIR of UP. The variable
BIN is set to zero to indicate that the
code is not yet in the binary mode in
which the value of DELTA can be halved
at each step. The initial step size has to
be maintained until the first circuit fail-
ure is encountered.

Now we begin a DO FOREVER loop
that is eventually terminated by a LEAVE
command. If the scan direction is UP,
then the step DELTA is added to
VALUE; otherwise it is subtracted. If
SIGN is POS, the variable TSTVAL is
set directly to VALUE,; if NEG, TSTVAL
is set to the negative of VALUE. Then

16

the subroutine TEST is invoked to per-
form the simulation.

If the result (indicated by variable FLAG)
is bad, we set variable BIN to 1 to show
that the binary search mode can be fol-
lowed. If BIN is still 0 at this point, we
start the next iteration immediately.
Otherwise, we cut the step DELTA in
half. If this makes it less than our de-
sired precision of 0.01, then we are fin-
ished and leave the DO loop. Other-
wise, we set the step direction to DOWN
if the circuit failed at that noise voltage
or UP if it performed correctly. We then
continue with the DO loop.

Each invocation of the script NOISESWP
determines the noise margins for one set
of circuit parameters. Typically I write
one more level of scripting. This one
invokes NOISESWP with many differ-
ent sets of parameter values. Sometimes
I use the FOR command (and even nested
FOR commands) to sweep one or more
parameters. Once this master script is
running, I can forget about it and turn
my attention to other work. When the
whole series of series of series of simu-
lations is finished, I just have to plot the
resuits (you don’t suppose I have scripts
to do that, too, do you!).

Plans for Next Time

In response to a request from Bill Kibler,
my next subject will be CP/M emulators
under DOS and especially the marvel-
ous MYZ80 emulator. All of my real
CP/M machines have suffered fatal hard-
ware failures, but MYZ80 allows me to
continue running them in emulation.
With a powerful DOS machine, the
emulation actually runs faster than the
real machine! As you have probably
noticed, my writing schedule has been
spaced out, partly to make room for many
new contributors to TCJ and partly be-
cause my schedule gives me less time for
writing. So you can expect my next
installment two or three issues from now.

Fotbetotototadotototatatatododobobobabobatobo
Listing 1. A first cut at an error handier script
for 4DOS Release 5.

@echo off

*set bademd=%&
beep

echo.

echo The foliowing command could not be
executed:

echo.

echos '-->*

input /e % %bademd

echo.

cali %bademd

unset /q bademd

L0 20 oo 2t A% BT DL L SN 2% 20 S8 2L L 28 2L 2% 28 20 S8 2n
Listing 2. The NOISE.BTM script that runs a
single simulation with parameter values
specified on the command line.

@echo off

.. This script starts a run of NOISE.CIR and
:: invokes PMATE to perform an analysis of
:: the results, which are recorded in the file
;- NOISE.RES. The following variables must
.: be provided on the command line:
i 1. the rise/fall time in ps (rftime)

2. latch RTD area ratio (ratio)

3. coupling RTD area ratio (couple)

4. clock high level (clkhi)

5. clock low level (clklo)

6. noise voitage (noise)

iff 1%6==! then
color bri yel on bla
text

This script makes a run of NOISE.CIR and,
using the PMATE macro NOISE.MAT, writes
the results of the run to the file NOISE.RES.
The syntax is as follows:

endtext

echo %0 rftime ltch_ratio cpl_ratio clkhi clklo
noise

text

The value of rftime must be in picoseconds.
endtext

color whi on bla

quit

endiff

. Generate the parameter file for the circuit

.. and write the parameter values into the result
:: file. A timer is started to record the time for
:: the run.

echo. >>noise.res

echos %_date:’ ‘ >>noise.res
timer on >>noise.res

echo. >>noise.res

echo .TRAN %@eval[3*%1]ps
%@eval[21*%1]ps >noise.par

echo .PARAMtau = %1ps >>noise.par
echo rftime = %1ps >>noise.res

echo .PARAM ratio
echo ratio

= %2 >>noise.par
= %2 >>noise.res

echo .PARAM couple = %3 >>noise.par
echo couple = %3 >>noise.res

echo .PARAM Vclki1
echo Vclk1

= %4 >>noise.par
= %4 >>noise.res

The Computer Journal / #66

echo PARAM Vclk0 = %5 >>noise.par
echo Vclk0 = %5 >>noise.res

call format.btm noise 0 2
echo .PARAM noise = %6 >>noise.par
echo noise = %6 >>noise.res

echo. >>noise.res

Run the simulation and analyze the resuits.
c:\pspice\pspice1.exe noise.cir noise.out

iff %7 gt O then

echo Run did not terminate normally
>>noise.res

echo. >>noise.res

iff exist noise.out then

c:\commands\edit.com $ b9e xi noise.mat § .9
echo. >>noise.res

endiff

timer off >>noise.res

echo. >>noise.res

echo
>>noise.res

beep 440 3 880 3 4403880 3

inkey /w20 /k"yn" Abort entire run? %%key
if %key==y cancel

tail -18 noise.res

quit

endiff

:: Have PMATE perform its analysis.

c:\commands'edit.com $ b9e xi noise.mat $.9
echo. >>noise.res

timer off >>noise.res

echo. >>noise.res

echo
>>noise.res

- tail -18 noise.res

beep 440 3 880 3 4403880 3
echos ‘Paused for S seconds . . . *
delay 5

2L 20 SR SR B SR SR S 20 SL T 28 T0 T8 0 0 L 28 et b 1
Listing 3. The script NOISESWP.BTM that
uses a binary search algorithm to sweep the
noise parameter to determine the range of
values over which the circuit operates
correctly.

@echo off

:: A large block of comments describing how
:: this script works has been omitted here.

:: The required command line parameters are
i the same as the first five with NOISE.BTM.

Check syntax and write header into
:: summary file.

iff 19%5==! then

{ A syntax message that appears here has
been omitted. }

quit

endiff

setlocal

set ritime=%1
set ratio=%2

The Computer Journal / #66

set couple=%3
set clk_hi=%4
set clk_lo=%S

echo. >>noise.sum

echos Run of NOISESWP

started: %_date at %_time' ' >>noise.sum
timer /2 on >>noise.sum

echo. >>noise.sum

.. Format variables and write header to
:: summary file.

call format.btm rftime 4 0
echo Waveform rise/fall

{ similar lines for other parameters omitted }

echo. >>noise.sum

echo noise performance >>noise.sum
echo -— >>noise.sum
echo. >>noise.sum

:: Initialize noise margins

set Nneg=0.0
set Npos=0.0

:: Check noise=0 case.

set tstval=0.00
gosub test
if %flag NE good goto finish

:: Binary scan over positive values

set sign=pos
gosub binary

:: Binary scan over negative values

set sign=neg
gosub binary

.- Write out summary of scan.

echo. >>noise.sum

call format.btm Nneg 0 2

call format.btm Npos 0 2

echo The noise voltage margins

are -%Nneg to %Npos >>noise.sum
finish

echo. >>noise.sum

echo Run of NOISESWP completed.
>>noise.sum

echos %_date at %_time' * >>noise.sum
timer /2 >>noise.sum

echo. >>noise.sum

echo
>>noise.sum

cls

tail -23 noise.sum
quit

SUBROUTINE BINARY

:: This subroutine performs a binary search for
. the maximum value of ‘noise’ that works.
‘binary

*set delta=0.32

*set value=0.00
*set dir=up
*set bin=0

do forever

iff %dir == up then

*set value=%@eval[%value+%delta)
else

*set value=%@eval[%value-%delta)
endiff

iff %sign EQ pos then
*set tstval=%value
else

*set tstval=-%value
endiff

gosub test

if %flag EQ bad *set bin=1
if %bin EQ O iterate

*set delta=%@eval[%deita/2]
if %delta LT 0.01 leave

iff %flag EQ bad then

*set dir=down
else
*set dir=up
endiff
enddo
return
SUBROUTINE TEST

:: This subroutine carries out one analysis

:: point and writes the results to the logging file
- NOISE.SUM. The variable “flag” is set to

. the value GOOD or BAD (or UNK). The

.. variable “tstval” carries the current value for
. the noise voltage.

‘test

if exist noise.gd del noise.gd
if exist noise.bad del noise.bad
if exist noise.unk del noise.unk

call noise.btm %rftime
%ratio %couple %clk_hi %clk_lo %tstval

iff exist noise.gd then

set flag=GOOD

iff %sign EQ pos then

if %value GT %Npos set Npos=%value
else

if %value GT %Nneg set Nneg=%value
endiff

elseiff exist noise.bad then

set flag=BAD

else

set flag=UNK

endiff

call format.btm tstval 5 2

echo %tstval %flag >>noise.sum
return

17

Real Computing

By Rick Rodman

Tiny-TCP

After much fiddling around, Tiny-TCP
is almost working. I have been finding
and fixing several minor bugs in the
TCP and FTP layers; the TCP layer is
working fine now, and I expect the prob-
lems with FTP will be fixed by the time
you read this. Then comes the fun of
porting it to a variety of machines.

Here’s a brief description of the soft-
ware. At the lowest layer, (see side bar
on OSI layers) you have the Internet
Protocol (IP). This layer defines only a
message structure. Message packets are
framed, checked and passed to the next
layer. Addressing uses the four-byte IP
Address scheme, usually depicted as four
decimal numbers separated by periods.
IP sits atop a low-level driver, which I
will get into in a2 moment.

Above IP is the Transmission Control
Protocol (TCP). This layer is session-
oriented - you establish a connection,
send data, and then hang up. The mes-
sages are sequence-checked so that they
arrive in the proper order and are passed
to and from the application.

The application, in our case, is the File
Transfer Protocol (FTP). This package
is quite easy to use, transferring using
ASCIHI commands and providing help
messages. Other applications can also
be coded, talking to the TCP layer using
what is sometimes called a *‘socket li-
brary interface’’.

Besides TCP, there are other protocols
which can sit on top of the IP layer:
Address Resolution Protocol (ARP), User
Datagram Protocol (UDP), etc. Tiny-TCP

18

supports a tiny subset of ARP, but none
of the others.

Tiny-TCP itself consists of five C files.
The main one is TINYTCP, which con-
tains the IP and TCP layers. TINYFTP
is the FTP application. ARP is the ARP
routine. The fourth of the original source
modules, SED (Simple Ethernet Driver),
is a driver for a 3Com Multibus Ethernet
board which most of our readers won’t
have. In its place I have written a SLIP
driver called SEDSLIP. SLIP stands for
Serial Line IP, and is a very simple, and
commonly used, way of throwing IP
packets out on a serial link. The last
module is called MAIN and supplies the
main program and real-time clock inter-
face.

For testing, [have been using an IBM
P70 portable PC running PC-DOS, and
on the other end of the wire, a Dell PC
running OS/2 and IBM’s TCP/IP for
08S/2. The method behind this madness
is to ensure that the final package will be
compatible with genuine TCP/IP SLIP.
Next to the Dell is a DEC Rainbow which
will be the next target for the code.

Porting this code will mean modifying
the SEDSLIP routine for your serial port,
and modifying the clock driver in MAIN
for whatever you have available. If you
don’t have anything, it would probably
work OK to simply add a value each
time the clock routine is called. On the
PC, it appears to be impossible to receive
data on a serial port reliably without
using interrupts - even on a 486, and at
1200 baud. So much for progress.

Once everything is working, you will be
able to send files to, or get files from, any
machine on the network, from any other
machine. It will only be necessary to

issue commands from one end of the
connection. The basic capability we are
aiming for here is simple file transfer.
Don’t start dreaming about running X
Window on your Kaypro. (By the way,
has anyone tried running Ladder on one
of those emulators? Or M.U.LE., one of
the best computer games ever written?)

One really great thing about TCP/IP is
the price of the documentation: free. You
can get any of the RFCs which specify
each feature by requesting it through E-
mail. You send an empty mail message
with a subject line of ‘‘RFC nnn”’ to
service@nic.ddn.mil, where nnn is re-
placed by the RFC number. Some RFC
numbers of interest are: 793, for TCP,
791, for IP; 768, for UDP; 959, for FTP;
826, for ARP; 821, for SMTP. Since
this is a mail service, everyone can play.
Sometimes things that are free are worth
every penny, but these are pretty good.

Now, recall that the only communica-
tions capability which is common to all
of these disparate machines is the RS-
232 port. This is the normal way of
using SLIP: bidirectional, low-speed se-
rial links, sometimes even over modems.
But if all of the connections are point-to-
point RS-232 connections, and you have
more than two machines, routing will be
required, which is an IP-layer function.
Routing means receiving a packet from
one serial port, examining the destina-
tion address, and sending it on another
serial port if it’s not for the receiving
machine.

I’ve considered two possible approaches
to this routing situation. One is throwing
together a 2-board S-100 system with a
CPU and 4 to 8 serial ports, which will
do routing and nothing but routing. The

The Computer Journal / #66

other is to use the PC-532, with its
multitasking capability and many free
serial ports. But there is also a hardware
alternative approach: the RS-485 net-
work.

The RS-485 network

Tilmann Reh has proposed an alterna-
tive where the RS-232 ports would be
level-translated onto an RS-485 bus,
which would function somewhat like a
low-speed Ethernet. The low-level driver
would be a modified version of SEDSLIP
which would *‘listen before speaking’’;
in the unlikely event that two machines
spoke at the same instant, their
retransmission delay would be slightly
different. This would eliminate the need
for the routing box. All machines would
receive all messages, but would ignore
messages for other machines. Other ap-
proaches using microcontrollers with 9-
bit interfaces have been discussed as well,
but the need to keep costs low has elimi-
nated these.

Here are some notes from Tilmann’s
messages: ‘‘Now to the physical inter-
face. Yes, RS-485 is a bus. But to start
at the beginning: We have several com-
mon serial interfaces out there. 1 will
give you a brief description of them in a
senseful order:

RS-232C: unbalanced, single TX, single
RX, max. 20k bps.

RS-423A: unbalanced (coax), single TX,
max. 10 RX, differential receiver, max.
100k bps.

RS-422A: balanced (STP cable) coun-
terpart to RS-423, single TX, max. 10
RX, max. 10M bps.

RS-485: serial bus interface, max. 32
transceivers, upward compatible to RS-
422A, max. 10M bps.”’

In TCJ #49, the problem of ‘‘zapping’’
through RS-232 data leads was exten-
sively discussed. As RS-232 cables con-
nect machines on different power cir-
cuits, noise spikes (ground noise) are
transmitted through the RS-232 cables
from one machine to another. This noise
bypasses the power supply filtering, com-
ing right into the most delicate circuitry.

The Computer Journal / #66

This is another reason for thinking about
other approaches besides a mesh of point-
to-point RS-232 links.

Tilmann writes: ‘ ‘For your information:
Ethernet LANs are also insulated. The
coupling to the network cable is done
with a small transformer. So the cable
itself is ‘floating’ and not connected to
any protective (or circuit) ground. This
would also apply to our RS-485 net if we
insulate all transceivers.”” Doing so may
require one or more isolated DC-DC
converters, which adds cost to the cir-
cuitry, however.

*“I just had an idea about how to avoid
that extra line. What if we used a
monoflop (one-shot) to enable the trans-
mitter. The trigger could be the transmit
data. In order to safely switch on before
we start to send, we would have to send
a single start bit (data FFh) to trigger the
one-shot. The time constant of the one-
shot must be chosen according to the
baudrate we want to use. This approach
of course has some difficulties, but it
would allow for real portable hard- and
software!”’ Actually, this would not be
much of a problem. The SLIP driver
works by sending out IP frames sepa-
rated by CO hex bytes. An extraneous FF
byte would be ignored.

I’'m leaving the hardware design to
Tilmann, and concentrating on the soft-
ware side myself,

Sprite

I haven’t tried to load Sprite yet. Its
authors characterize it as an experimen-
tal distributed operating system; when
users started clamoring for all their fa-
vorite Unix features, they decided to take
it down instead, to avoid the burden of
support. It’s supplied on CD-ROM with
a monumental amount of source code
and documentation. One of the interest-
ing ideas they used was a ‘‘Log File
System.’’ In this file system, there is no
directory structure per se. Instead, the
serving computer simply keeps a big log
of everything that the user does to all the
files. Then, if anyone needs to go back
and read something, the real work comes:

starting at the beginning, it reconstructs
the current image from all of the changes.
This dramatically improves file-writing
speed, which is often a network prob-
lem, but one would think that it would
provide poor reading speed. Fortunately,
most files are simply read and written as
whole units, rather than being randomly
read and written at disparate times.

As I mentioned, I haven’t actually run
any of this code, but reading some of the
documentation really got my wheels turn-
ing. I’ve often wondered why we put up
with the limitations of the way files are
on all of our current operating systems.
Notice that you can only add data to the
end - never to the beginning or middle;
and a few operating systems allow you to
delete from the end, but never from the
beginning or middle. Lately I’ve been
trying to design an efficient disk queu-
ing mechanism which allows for mul-
tiple writers, and these limitations make
it a real headache. Presumably, the rea-
son is the block nature of disk storage
and low-level decisions to forego byte-
addressibility - which, really, only pushes
the overhead out of the operating system
into all of the user programs.

This is a fundamental nature of comput-
ing. Overhead doesn’t ever go completely
away - if you push it out of one place, it
reappears everywhere else. For example,
the killer feature of Unix, which guaran-
tees it can never succeed, is case-sensi-
tivity. Some will argue that it can be
handled in the user programs - but the
difficulty, hence the cost, of checking for
upper and lower case is tremendously
greater in a user program. So, to spare a
few dozen lines in the kernel, the com-
puting world has paid, and continues to
pay, the price of millions of program-
mer-hours and megabytes of source code.
It would be tragic if it weren’t so stupid
- and so commonplace.

Macintosh fans like to remark that IBM’s
decision to use the 8088 in the PC was
the costliest mistake in history. It’s hard
to compare that with other historical
gaffes, for example Napoleon’s invasion
of Russia, but in terms of pure dollars
and cents, I think they have a good point.
But the whole history of computing is
the history of shortsighted mistakes just

19

like that, and we can expect a whole lot
more of them to be made in the future.

The future belongs to you, T7CJ reader.
When your turn comes, take the extra
time and do it right. Go ahead and de-

sign for the ages. Someday, maybe, some-
one will appreciate it.

Next time

There’s more to cover in the TCP/IP
land from the Linux side. Linux’s TCP/
IP support has been criticized as defi-
cient, but it’s actually not bad at all.
Then we can move to other networking
topics and, from there, back to the basics
of Real Computing. Additionally, I may

take time out to discuss X Window and
MPEG. There’s no limit to what you
can do with computers - they’re the great-
est toys - er, tools - in the universe.

Where to call or write

Real Computing BBS or Fax: +1 703
330 9049

E-mail: rickr@aib.com

Mail: 8329 Ivy Glen Court, Manassas
VA 22110

The OSI and Physical Layer

The International Organization for Stan-
dardization (ISO) and the CCITT have
standardized on a reference model for
networking, often referred to as the Open
Systems Interconnection (OSI) reference
model. This model partitions network
functionality into seven layers. These
are, of course, arbitrary partitions, and
different networking packages will par-
tition themselves into fewer layers, usu-
ally, for efficiency.

The bottom-most layer is the Physical
layer. This layer concerns itself with how
a 1 or a 0 looks on the physical network
media. Above that is the Link layer,
‘which defines a packet structure atop the
physical media. At this layer, collision
detection would take place. The next
layer up is the Network layer, at which
routing and connections between ma-
chines is handled. Atop that is the Trans-
port layer, which concerns itself with
moving data across the network; then
the Session layer, which establishes and
takes down routes across the network.

The Presentation layer is concerned with
the standardization of the meaning of
the data, things like ASCII and EBC-
DIC, and the Application layer is con-
cerned with the use of the data, for ex-
ample, for word processing files. The
distinctions between the layers are very
subtle and ambiguous; but, as pointed
out, it doesn’t really matter because
actually using this many layers would be
grossly inefficient.

In TCP/IP, the IP layer corresponds
roughly to the Link and Network layers;

20

the TCP layer corresponds roughly to
the Transport and Session layers. FTP,
as the end user of the data, takes the rest.

Application Layer

Presentation Layer

Session Layer

Transport layer

Network Layer

Data Link Layer

— Physical Layer----- >

Many physical configurations are pos-
sible for our small network. The normal
way in which SLIP (Serial Line IP) is
used is in a point-to-point arrangement.
This would require that at least some of
the machines be able to forward packets

(fig. 1).
AMIGA

RAINBOW

S-100

PC-532 —

SUN — |

Fig. 1. All links are bidirectional.

In the point-to-point arrangement, some
of the machines would have to be on at
all times, if they are performing router
services for the other machines. In fig-
ure 1, the S-100 and PC-532 machines
have to be running for the Amiga and
Rainbow to be able to connect to the
Sun.

Ideally, of course, all machines would be
connected directly to each other. But,
while S-100 systems can easily be
equipped with lots of serial ports - I've
seen systems with over 30 ports - newer
machines like the Amiga and PCs usu-
ally can’t have more than one or two.
This is called “‘progress’” - I don’t think.

A simple scheme which allows intercon-
nection of all the machines with a single
port on each is called the “‘serial token
ring’’. This is shown in fig. 2. The data
out from each machine’s serial port is
connected to the data in on the next
machine.

AMIGA ———

RAINBOW ——

S-100

PC-532

SUN

Fig. 2. All links are Unidirectional.
While visually quite elegant, this scheme

has a number of drawbacks. All of the
machines must resend all received pack-

The Computer Journal / #66

cts which are not for them; this means
that the networking software must be
running at all times on all machines. In
the worst case, the packet has to be sent
and received by three machines before
the fourth gets it. This could cause sig-
nificant delays, at the speeds being pro-

‘posed, if the entire packet must be re-

ceived before retransmission.

The RS-485 bus approach is shown in
figure 3. In this approach, all machines
receive all messages, but ignore any that
are not for themselves. When sending,
the machine would wait for a certain
amount of quiet on the bus before send-
ing. If he received no response, there
would be a timeout before
retransmission.

AMIGA

RAINBOW

S-100

PC-532 —

SUN — 1
BUS
Fig. 3. All links are bidirectional.

The bus approach has many advantages.
It doesn’t matter whether any machine
is on or off, unless you want to talk to
that machine. Also, there is no routing,
so any packet you send goes directly to
the recipient with no forwarding - and
no delays. On the other hand, the possi-

bility of collisions could slow things
down. In figure 3 I show the Sun being
oconnected with a point-to-point link. This
is because I don’t think I can modify the
Sun’s SLIP driver for non-point-to-point
configuration.

From the user’s standpoint, there is little
difference in any of the scenarios shown.
This is because most of the implications
of the connection scheme are contained
within the Physical layer, with small
changes at the Network layer.

NOW AVAILABLE!

“...a must addition to the
library of every computer
enthusiast. Highly recom-
mended.”’

—John C. Dvorak,
PC Magazine

Stan Veit’s
HISTORY
OF THE
PERSONAL COMPUTER

v
00000000000 000600000008000000000000000

order trom: WORLDCOMMe 1-800-472-0438

65 Macedonia Road, Alexander NC 28701
(Visa and MasterCard sccepted)

Please Send: N.C. Residents Add 6% Sales Tax °
____Hardback Copies of History @ $27.95 plus $3.00 S&H
___ Paperback Copies of History @ $19.95 plus §3.00 S&H
Name

Address

City Zip

The Computer Journal / #66

Do you need
Micro Cornucopia Disks?
Boot Disks?
Disk Copying?

Lambda Software Publishing

can now supply reprints of
Micro Cornucopia Magazine,
Kaypro Disks, Boot disks, CP/M 2.2,
ZCPR and CP/M programs.

Kaypro disks $5.00
all 49 disks $200.00
Catalog of disks $5.00
Disk Copying $10.00
MicroC reprints $8.00
Z-Letter back issues $3.00
CPM 22 $25.00
Spellbinder v5.3H $60.00
Contact
Lambda Software Publishing
149 West Hilliard Lane

Eugene, OR 97404-3057
(503) 688-3563

21

Dr. S-100

By Herb R. Johnson

“Dr. S-100’s Spring column’’ by Herb
Johnson (c) Mar 1993

Introduction

Well, my recent contract job ran its
course, through the worst winter of 40
years in New Jersey. The bad news about
the 14th snowstorm is that it cost me a
transmission - it literally blew itself up!
The good news about the completing my
contract is...more time for my IMSAI,
Compupro and my columns! Actually,
my writing carecr was enhanced recently
by the publication of my article on astro-
nomical image processing in Observa-
tory Techniques in their Winter 1994
issue. If enough TCJ readers are inter-
ested in microprocessors, CCD’s, and
telescopes, I'll clue you all in on this
revolution in astronomy which lets ama-
‘teurs do professional-quality observing
even in the glare and fog of the city!

Meantime, I can now address the enor-
mous letter pile. My regrets to those
requesting information or a source for
the WonderBoard from Fritz’s
ComputerWorks, or who have a
WonderSystem to sell: a reply is on the
way! A few letters of note come to mind:

Eyes on the Skies by CompuPro

More news from Robert Grey of Chi-
cago, who uses a Compupro 8/16 system
to operate a radio telescope. I was able to
dig up a few Disk 1 (floppy controller)
cards for him for parts, and a Interfacer
1 (I/O) card to get him back on the air!
He’s still interested in upgrading his
8085/8088 processor card to a faster 8085
or Z-80: I'll try to get him a ‘‘plug and
play’” Z-80 card configured in the near
future. (If you read my previous TCJ

22

article, I described how Robert has con-
ducted a SETI (Search for Extra Terres-
trial Intelligence) program for the last
ten year, listening at the radio wave-
length of 21 cm.)

One of the nice features of Compupro
systems is the wide range of cards they
provided over the years, including Intel
80286 and Motorola 68000 processor
cards, hard disk and RAM disk cards,
and networking cards. I haven’t checked
lately but I imagine they are still in busi-
ness, servicing their industrial business
and development customers. If anyone
has had recent dealings with them, I'd
be curious. Robert would like to help a
few other S-100 users: ‘‘I’ve got a few
used Compupro boards: Interfacer 3,
Interfacer 4, and Ram 20 (32K static
RAM card), plus some software and
docs.”

As for Robert, he is now copying his
collected data from 8" disks to a PC-
compatible 486 system for further analy-
sis. Although he admits that system has
more computational power than his
8085-based Compupro programs, it
would need an IEEE-488 interface to
operate his Hewett-Packard spectrum
analyzer, and a number of optically-iso-
lated 1/O lines to operate the motors of
the dish. In addition, all his graphic and
control programs would need to be re-
written, and with new hardware drivers
to boot! Robert has wisely chosen to
maintain his investment in Compupro
equipment, while moving the data. As |
am also an amateur astronomer, 1 hope
to work with Robert to make his data

available to other amateurs and profes-
sionals for further study or just curiosity!

IDE and S-100...coming soon?

Just before my deadline, I read a letter
from Claude Palm of Palmtech in
Queensland, Australia. ‘“My firm has
designed a single-chip IDE [hard disk
drive] interface for the S-100 bus. I have
named it PT IDE100. It is based on a
[programmed logic chip] in a 68-pin
PLCC package. As the main author of S-
100 related articles in TCJ, I thought
you may be interested in this device. [!]”’

““I enclose some preliminary informa-
tion on the PT IDE100 and a suggested
application for the chip which I call the
HARDBOARD. I have a point-to-point
[i.e. hand-wired] soldered prototype com-
plete with FDC [floppy disk controller]
working at present with no
problems... Incidentally, this letter was
written on that system... The PT IDE100
is the first commercial S100 product I
have become involved with, and I am
testing the waters to see if it is worth
pursuing this or any future S100 prod-
ucts.”’

[immediately FAXed a letter of interest
and accepted his offer to evaluate his
chip and prototype design. 1 was sur-
prised that evening when he called me to
discuss details! Claude is a designer who
uses the S-100 bus as a prototyping en-
vironment for interface design, *‘because
the bus is so straight forward’’. He tells
me that it was “‘easy’’ for him to design
a similar one-chip interface for the
Hitachi HD64180 (Z180 compatible)
processor, which was also on the same
system as the IDE100. I will be evaluat-
ing the costs of a PC board layout for his

The Computer Journal / #66

IDE interface, and the effort required to
make his BIOS software ‘‘commercial’’,
as it was derived from licensed software.

It’s too early to determine costs, but I
suspect a S-100 card with IDE, ROM,
and floppy might approach $150 due to
small-production costs. Claude and I have
also discussed making the chip itself
available, and the possibilities of a single-
board Z180 system he is developing. I
canunderstand Claude’s caution in *‘test-
ing the waters’’ for S-100 products, con-
sidering the typical S-100 system today
is acquired for $100 down to zero. How-
ever, I think a few boards may yet be
sold! I need to hear from my Faithful
Readership on this: what do you need on
an S-100 IDE interface to make it work
for you? And, more to the point, will you
pay the price? Write or call quickly while
I have some opportunity to work on this
with Mr. Palm.

S-100 is not the only bus service in
town...

John J Fiorino of Brooklyn NY makes
me an offer I can’t refuse, and gives us
a few lessons in old systems use. ‘‘Re-
gret the delay in responding to your
note...the snow has made it impossible
to get the car out of the garage! I cer-
tainly would like [your] SWTPC [SS-50
bus] 6809, 64K 8 inch drives and /O
card with [the] FLEX [operating sys-
tem]. I have just the same system new,
which has never been hooked up and
running. I'm still using the SWTPC
[Motorola} 6800, but I’d like to upgrade
to the 6809. Your machine would be
looked at as spare parts...I would like to
pick it up myself as it would be easier for
both of us. You would not have to lug it
down to the post office and I would not
have to wait for the delivery truck.”’

[By the way, this is a very effective ar-
gument! I’ve packed many systems and
shipped them cross-country, sometimes
in pieces to get the weight down: and
sometimes in pieces after they arrive!
*‘Cash and carry’’ is an important bar-
gaining tool.]

John would like to hear of other SS-50

system users and sources for ‘‘old chips
and 360K diskettes and drives’’: *‘I have

The Computer Journal / #66

a lot of software for the 6809 and a large
amount of 8-inch diskettes. I"d like to set
up the 6809 now, seeing that I could
now have backup.’”’” Another bit of wis-
dom from John: keep two systems run-
ning, one for parts and repairs! The easi-
est way to test a bus card, whether S-100
or S8-50, is to “‘swap’’ it into another
working system.

Rick Rodman, my TCJ colleague, asks if
I have a Compupro System Support 1
card and manual: I do, and I usually can
make them available for a modest charge.
Any other readers that have manuals
available, or whom need manuals, for S-
100 cards? Drop me a line or call!

Kaypro’s and Cromemco (?)

Richard de Nobel of Silver Springs, MD
says “‘I am the owner of a Kaypro 4
which I acquired as my first computer at
age 63. I’ve been having some fun with
it! So, I subscribed to TCJ and a few
other small clubs here near Wash. DC.
I’ve got CP/M Version 2.26 up and run-
ning after much difficulty: I don’t know
why, but mostly no documentation. I
have a copy of MicroSoft Basic-80 rev
5.21 up and running also. I even learned
how to configure it a little, and now have
a serial printer LC-50 on the printer

pOI‘[.”

‘I would like to change a few things,
like how to change the default 132 char-
acter line for LPRINT, the line editor is
not good, etc. I have a programming
(Fortran) background and understand
quite a bit and I’m not too bashful about
trying a few things.”” Richard would like
to find docs for Basic-80 “‘unassembled’’:
anyone know about this?

“One thing I came across was that
Cromenco had at one time an excellent
group of programs for [their] System 2
or 3 that included COBOL, FORTRAN
IV, and a 32k Structured Basic!!... 1
gotta ask you about [whether] Cromenco
software will run on a Kaypro 2X DSDD
diskette or Kaypro 4, I would also like to
find a better BASIC and line editor. Is
any of this software available? Also, I
have a friend with a Northstar Horizon,

so if you would care to comment on
support in software for that machine too.’

Hmmm...Well, Cromenco is still around,
but I don’t think you want to spend hun-
dreds of dollars for their software. The
problem is that they didn’t use CP/M as
their operating system, but a look-alike
called CDOS. While it has many of the
same features of CP/M and some of the
same ‘‘DOS’’ calls, it is not 100% com-
patible. And like most ‘‘big guy’’ com-
mercial software, they did not provide
sources to end users. I’ve heard of CP/M
emulators that ran on some Cromemco
systems, and there are CP/M’s config-
ured for Cromenco systems, but I don’t
know offhand of successful ‘‘conver-
sions’’ of CDOS commercial programs.
I’m not a CDOS ‘‘guru’’ by any
stretch...any readers care to give me a
clue here?

However, your real interest is in a more
powerful BASIC. You should get to-
gether with a PC-compatible friend and
get ready to buy the CP/M CD-ROM:
it’s bound to have some alternatives to
8K Microsoft Basic! Or, contact the ven-
dors in this magazine or as cataloged in
the Z-Letter (see the ads) for their “‘best”’
BASIC’s and Fortran’s.

Call me IMSAI

Walter Rottenkolber of Mariposa CA
apparently reads my articles, as he gives
me best wishes “‘in your new house”’
that I wrote of some time ago. ‘I read
your Dr S-100 articles in TCJ, because 1
bought an IMSAI a few years ago and
am in the process of bringing it alive
again. It has a set of CCS [California
Computer Systems, a good S-100 ven-
dor] boards -- CPU, static memory (4 -
16K cards) and [floppy] disk controller.
The only glitch is that the 8* drives
were sold beforchand, and all I was able
to get was a 5.25" SS drive. With a
friend’s help, I transferred the CCS CP/
M files over to a Kaypro disk.”’

‘‘l adapted a multiformatter, a multidisk
program, and a sysgen so that I could
use my Kaypro to read/write to the A400
(CCS diskette) format. The CCS System

23

file is now on the system tracks of the
IMSAI disk, for the moment as a 20K
CP/M.”’ [Translation: he wrote programs
to format disks for the CCS system, and
copied the CCS CP/M over to them.]

“When I start the IMSAI the system
comes up in the ROM monitor. All the
ROM functions work, except BOOT.
This locks up and the system seems to go
into an endless loop.’’ [Walter should be
able to confirm this by single-stepping
the CPU, provided he has adapted the
IMSAI front panel to fully operate the
CPU: this may not be easy. Pins 20 and
70 are often grounded on later S100
cards,but must be at least ‘‘floating’’ for
the IMSALI front panel to operate.]

““I load the CP/M manually this
way..[with the following ROM com-
mands}:

PO 120
; sets parameters for SSSD,
;18 sectors, 128 bytes each.

Q002
; sets side 0, track 0, sector 2
R2C00 4600
; reads from disk to memory from
; 2C00 to 4600
$2C07 > 07-00
; zeros out count byte in
;CCP buffer to prevent a autoload
;of the extended BIOS. The
;standard BIOS will run the A400
;drive and the serial port.
G4200
; jumps to the CP/M Cold boot

The logon message appears and then the
A> prompt. Now the ‘fun’ begins. All
keystrokes appear on screen as @, i.e.
CP/M’s character for binary zero [char-
acter 0]. When you type in enough char-
acters, a new CRLF and A> prompt is
outputted. I dumped the code and it looks
OK. Most of the BIOS follows the ROM
code. So, I have the strange situation
where CONOUT apparently sends chars
OK to the terminal but CONIN (these
are CP/M DOS calls) is locked on 00H.

24

However, there is no problem with R/'W
when in the Monitor.”’

Well, 1 congratulate you on some ambi-
tious programming!

Why are you zeroing out the CCP each
time? Why not put the zero in on the
diskette sector once and forget it? For
my reader’s sake, Walter is disabling the
command string in the CCP string buffer
by telling it there is a zero-length (no)
string. CP/M can ‘auto-start’ a program
or command at boot time by embedding
the command in the CCP buffer as part
of the CCP code on the boot tracks.
Typically, this is a way to load in more
BIOS code at bootup, or to execute a
.BAT file at bootup.

After you have loaded your current CP/
M and BIOS, try loading in or hand-
entering a simple console echo program
(read keyboard, send character to con-
sole), making BIOS calls. Confirm the
BIOS works as CP/M expects. Write
another console echo program, making
BDOS calls instead of BIOS calls. Does
it work?

Another tact you can try is to verify that
the CP/M is properly relocated. Dump
memory and see if the JMP instructions
make sense: are they located where they
should be as compared to a similarly
sized CP/M on your Kaypro? Also, I'd
try a bigger CP/M, say one for a 32K
system. Meanwhile, if the front panel is
working, you should step through the
code from the A> prompt after you type
in a letter, and see what is going on. It
would seem a shame to have an IMSAI
front panel if you can’t use it to step
through code!

Since you have a Kaypro, and since you
clearly have the knowledge and infor-
mation on the CCS system, I'd suggest
you write a simple, stand-alone BIOS
for the CCS hardware that would make
no ROM calls at ALL! You can abstract
out the disk read/write code from the
ROM by disassembly and include it into
your BIOS. Test it by writing a code
fragment to read a number from the
console from 1 to 18, which will read
that sector of the ‘‘current track’’ into a
buffer. Do the same for reading sector 1

of track 0 to 9 as entered: you get the
idea. As for the BOOT code, you can use
your earlier trick fo load it in via ROM
commands. After doing all this, you
might find the solution to resolve your
current problem, or simply work around
it.

Quick notes

Victor Lypka has a system with some
IMSAI I/O and memory cards, a Solid
State Music video card, some ROM and
/O, and a Tarbell cassette. Anyone in-
terested?

Thanks to James C Matthews of Mont-
gomery AL, who has offered to help
rewrite some Northstar BIOS routine to
support their disk controller on my Pro-
cessor Tech SOL system. Seems that
NorthStar started out as a supplier of
disk controllers for SOL users before
offering their own systems!

References

Robert Grey, 3071 Palmer Square, Chi-
cago IL 60647.

Observatory Techniques,

John J. Fiorino, 518 85th Street, Brook-
lyn, NY 11209.

James C Matthews, 2028 Merrily Drive,
Montgomery AL 36111

Walter J Rottenkolber, p.o. Box 1705,
Mariposa CA 95338

Victor Lypka, 9201 Oday Drive, High-
iand IN 96322. 219-924-1315.

The Computer Journal / #66

TCJ Center Fold

Mr. Kaypro
By Charles Stafford

WHEREIN We Undertake The Construction Of An Implant

In The Beginning, there were ANALOG computers, and only
HIGHLY QUALIFIED WIZARDS (HCWs) were allowed in
the same room with them. These ANALOG computers con-
versed in varying voltages and currents and all was well. Since
they were HARD-WIRED and constructed of potentiometers,
coils, meters, and relays, they were RELIABLE if not inscru-
table.

Then Came The Binary and Boolean Algebras, and VACUUM
TUBES and later SEMI-CONDUCTORS, and MICRO-PRO-
CESSORS, and DIGITAL computers. The HCWs eschewed
their ANALOG computers and defected en masse to the new
gods of speed. These DIGITAL computers conversed in Os and
1s and their communications were voluminous, and required
the efforts of KEYPUNCH OPERATORS (a lesser form of
HCW) and PROGRAMMERS (a special breed unto them-
selves), and these communications were contained in many,
many boxes of cards which were carefully warehoused.

The Quest for Speed continued, and MAGNETIC TAPE was
re-discovered, as was ROTARY MOTION and the DISK
DRIVE was born and mutated into several varients. And the
HCWs were ecstatic, because only they could see the BITS and
BYTES on the diskette.

Today the common sizes are 5.25" double-sided double-density
(DSDD) (360k), 5.25" high-density (HD) (1.2mb), 3.5" DSDD
(720k), and 3.5" HD (1.44mb), with 3.5" very-high-density
(VHD) (2.88mb) on the horizon. (I made up the VHD desig-
nation). Most KayPro s were delivered with the 5.25 DSDD
variety, the exceptions being the K-2s, which had 5.25 SSDD
180k drives, and the Robies and K-4Xs which had 5.25 2.6mb
DriveTec drives. The DSDD drives in the KayPros had a
capacity of 390k, 10% more than their IBM brethern, but more
is better, right? Sometime during the drive evolution, the
QUAD density drive was developed, with 96 tracks per inch
instead of 48, resulting in 160 tracks total and a capacity of
790kb.

Some of the more enterprising HCWs transplanted these DSQD

drives into K-4s and thus were born K-8s. Microcornucopia
and Avent Products formalized the modifications and they

The Computer Journal / #66

became very popular since they were within most budgets and
HARDDRIVES were extremely expensive.

The two conversions used different designs based on their
respective monitor roms. The MicroCornucopia (MicroC)
monitor rom uses a utility program to configure the drive bios
and thus only requires a multiplex decoder on the drive select
lines to select the proper drive. The KayPro mother-boards
were designed with only two drives in mind, so only drive
select A and drive select were implemented. By multiplexing
both lines we can come up with four choices, and one of four
drives. The drawback to using the MicroC rom is that when
you install a harddrive, the Micro-C rom won’t boot off the
harddisk.

The Advent TurboRom on the other hand will boot off a
harddrive, but dynamically configures the drive bios based in
an inquiry to the ‘‘Personality-Decoder Board’’. The advan-
tage is that reconfiguring drives only requires only rearranging
the hardware and setting the switches on the PDB. The disad-
vantage is that the PDB is more complex. Unfortunately
Advent is out of the CP/M business and the stock (theirs and
mine) of PDBs is completely gone. Fortunately, we can build
one fairly easily.

We will attack this project on two parallel tracks. One, with a
custom printed circuit board that you can make, if you feel up
to it, and, the other, with an off the shelf prototype board. The
difference is where you put the labor, into point-to-point wir-
ing, or into the manufacture of a printed circuit, which will be
considerably smaller.

This will also be a two article project. We will start with
making the custom circuit board, and do the assembly in the
next issue.

Some time ago I mentioned that I knew nothing about making
circuit boards and Ed Fanta called me and volunteered to make
some for the PDB. The process that seems the best for the
novice is the copier method. Here are Ed’s notes on the entire
process and the “‘plots’” as well. NOTE These plots are twice
as big as you will want for the finished product. Reduce them
to half size on the copier you are using and they’ll be just right.
Experiment on plain paper before making the mask material to
make sure the size is proper. You can check the size by
measuring the distance across eleven pins of an IC. The spaces

Center Fold Section 25

T
LTI

Agio

KAYPRO CIRCUIT BOARD

:-E {B;llifﬂit -] F z 3 :L
23 L 4\ A.__ N, M _l_i_j
-og) g
§-~ . SELECT = ON i
> |z
5 gu E h lh]bﬁ :
o |
sRlRis] | Tl | 4.Q4.4.6.0.9- - . -l /
I .9‘?9;?;?{;0 S T ?\
z -
L A,A'A &
y< SIDE SEL A T
¢+ e PN
vee = |]!
e T
39 il 118
R < i W
I 4]
H 5
||%
PN *n Q‘ - & l- 4l | ': o le |8 |2
g = 8 m ﬁ.’ “ e v - eenNa e
-3 ;
L r A
g < READY
; 7
8
s fe 2 |
34 Fe 10 o o s >
é%é 3/ e et
- %) A I SO %
ge¢ < FFFIFFRRET
Ro
¥ % A
3§ 1 P : J
2 vV oV v R _}b
: Bl::!nls-] & i3 s = |
DISK DRIVES

Center Fold Section The Computer Journal / #66

should be 0.1 inch each, so the distance across ten spaces
(eleven pins) should be one inch. The complete directions for
use are on the package of material for the masks. Both the
mask kits and etchant are available from most electronic hobby
stores.

[Ed’s notes:

Hello Chuck

Things are finally winding down a bit, the light at the end of
the tunnel is getting closer. I am getting time to write this and
~ Eric found the time to plot out the etching masks. The follow-
ing is a few ideas about the PCB process.

Etch Tank

Find a tall, narrow tank. A good start is look in the housewares
department. No, no, not the kitchen cabinets, go to a depart-
ment store and look over the plastic wares. The one I found
most suitible was a beverage container for dispensing softdrinks,
it is about 10 inches high, 8 inches wide, and about 3 inches
deep with a snap on lid. A tray for holding the board to be
etched might be made from a smaller such container or, as |
have used, a cut down antifreeze jug. The tray should have
holes cut in the side and 2 parallel rows of holes cut in the
bottom. The holes in the bottom are for our next stop, the
aquarium department. The small aeriator pumps work well to
keep the etchant stirred up. The holes in the bottom have a
section of aeriator tubing laced through them, melt holes in the
tubing with a piece of wire heated over a candle or some such,
then heat the end of the tube so the plastic just starts to melt
and squeeze the end shut with a pair of pliers. Always keep the
pump above the liquid level or remove the tray when not in use.
Now look a little further down the aisle from the pumps and
pick up an aquarium heater, a small one is just fine. Make sure
it will fit over the lip of the etch tank and will clamp securely.

Drilling circuit boards

Drilling is the most tedious part of the process, patience and a
good eye are required. If you get a good etch the centers of the
pads will be etched and will help center the drill bit, if not use
a sharp awl to mark the centers. If your registration between
sides of the board is not perfect or the bond of the copper to the
fiberglass is weak it is likely you will peel the traces off the off
side of the board. One way to get around these problems is to
drill the board half way through, flip the board over and finish
drilling. Twice the fun! A good drill press with a spindle stop
comes in very handy, see if you can borrow the neighbors.
Carbide drill bits are used in the industry as they maintain a
good sharp edge. For hobbiest use go to a hardware store or a
machine shop supply and buy a couple of no. 63 or 64 size high
speed bits, the edge will not last as long but they will bend long
before they break.

Putting on the etch resist

Etch resist can take several forms. Photosensitive, manually
applied rub-ons, iron-on, and silk screen. Manually applied is

28

Center Fold Section

OK for small, simple jobs, but is tedious for anything more
than a couple of IC’s. Photosensitive has been the way to go
in the past as it will give good resolutio., with the tradeoffs of
hard to register on a double sided board, and getting the proper
exposure. Silkscreen is the way to go when making a bunch of
boards but has a higher initial cost for the equipment and still
takes some work to get a double side board registered. Iron-on
is probably the best for the average hobbiest as it has the lowest
cost and takes no special equipment. There are several types of
iron-on film available, many are advertised in magazines.
Another idea is to use transparency film made for use in a
photocopier. It works almost as well and is available at most
office supply stores. The big problem to using this method is
finding the right copier, many (particularly Xerox) fuse the
toner onto the film at too high a temperature and it will not
transfer to the board properly. Use of the film is simplicity,
simply copy your artwork onto the film, lay it on your board,
and run over it with a laundry iron. Be very careful with the
film after copying as the toner will flake off, do not bend or fold
the film. Registration of the two sides can be a problem unless
you have X-ray vision, an idea for that is to add a couple of
extra pads in opposite corners of the board and drill them after
ironing on the first side, then simply sight through the film to
line up the holes. A small prick punch or a fine awl should be
used to mark the holes for the drill.

Etching the board

Good etchant, good agitation, and the proper temperature
make for a well etched board. A properly set up tank will etch
a board in S to 8 minutes when the etchant is fresh, if the etch
time rises above 12 to 15 minutes it is time to replace the
etchant. Try to keep the temperature around 110 degrees.

Soldering the components

Most hobbiest boards will not have the luxury of having a
solder mask screened on so we fake it! If you have a good steady
hand and a fine brush you can use paints or laquers to make
a fine line between pads to keep the solder from jumping
across and making a solder bridge. If you have an unsteady
hand and slop some on the pads simply use a small tool to
scrape it off the pad. Tinning is a good way to make it easier
to make the solder take hold. There are several tinning solu-
tions available but another way is to apply a very thin coat of
paste flux, a little solder and then chase it around the board
with a soldering iron.

Be careful not to let the layer get too thick, you want just
enough to coat the pads. When soldering a double sided board
without plated through holes there is the problem of soldering
the component side. One way is to cut short pieces of fine wire
and place them in the hole with the socket lead. Another way
is to forgo the sockets and solder the 1C leads directly to the
traces, just make sure you have good components. A third way

Continued on page 33

The Computer Journal / #66

CONNECTING IDE DRIVES

by Tilmann Reh

In part II we covered the basics of the IDE interface in terms
of history, concept, hardware, and register structure. In part Il
I started describing the various commands and parameters of
IDE drives. This time I will finish that command description
and offer some sample driver routines.

I must apologize!

Sorry for the badly formatted Pascal listing printed with part
111 in the previous issue of TCJ. Bill had to delete all the empty
lines in order to compress it to a single page. Now I know that
this doesn’t make a program more readable or easier to under-
stand, even if it’s written in Pascal. We will try to do this better
in the future.

Commands Continued...

We already covered most of the manufacturer-independent
commands in the previous part. However, there are three
commands not explained yet. Let’s get started with the com-
mand which was already used in the sample program printed
‘with the previous part -- so you’ll now know what you really
did there (in case you ran that program).

Identify Drive (ECh):

This command reads some detailed parameter information
from the IDE drive. Again, it’s invalid for the older (external)
controllers. It is started by writing the command code into the
command register, and then it executes like a Read Sectors
command. The DRQ Flag will be set, declaring that data can
be read. After having read a complete ‘‘sector’’ (256 words,
512 bytes) of data, the DRQ flag will be reset and the drive will
be ready again. The data consists of the following fields:

Word Byte

Adr. Adr. Type Content

0 0 word Configuration/ID word

1 2 word Number of fixed cylinders

2 4 word No. of removable cylinders

3 6 word No. of heads

4 8 word No. of unformatted bytes per
physicat track

5 10 word No. of unformatted bytes per sector

6 12 word No. of physical sectors per Track

7 14 word No. of bytes in the inter-sector

gaps

The Computer Journal / #66

8 16 word No. of bytes in the sync fields

9 18 word O

10-19 20-39 20char Serial number

20 40 word Controller type

21 42 word Controller buffer size (in sectors)

22 44 word No. of ECC bytes on “long”
commands

23.26 46-53 8char Controller firmware revision
27-46 54-93 40char Model number

47 94 word No. of sectors/interrupt

(0 = no support)

Double word transfer flag

(1 = capable)

Write protected

reserved (read as zero values)

48 96 word

49 g8 word
50-256 100-511 -

Some of these fields have special meanings. The configuration/
ID word consists of 16 single-bit flags. However, I don’t know
for sure if their meaning is really manufacturer-independent.
The “*controller type’” word is encoded as a number represent-
ing a particular type.

Configuration/ID word bit flags:

15 Non-magnetic drive

14 Format speed tolerance gap required
13 Track offset option available

12 Data strobe offset option available

11 Rotational frequency tolerance > 0.5%
10 Data transfer rate > 10 MB/s

Data transfer rate > 5 MB/s, <= 10 MB/s
Data transfer rate <= 5 MB/s
Removable disk

Non-removable disk

Spindle motor can be switched off
Head switching time > 15 us

Not MFM encoded

Soft sectored

Hard sectored

reserved

O = N W H L] 0O

Controller type word values:

0 Not specified

1 Single ported, single sector buffer

2 Dual ported, multiple sector buffer

3 = 2, with look-ahead read capabilities

The string-type data fields (character arrays) contain plain text
information about the serial number, controller model, and
firmware revision of the drive. Each word holds two characters,

which must be displayed with the high-byte character first in
order to get readable results.

As far as I know, most IDE drives follow the data field descrip-
tion above. However, there still are many things which are
manufacturer-dependent. Fortunately, these details are not criti-
cal. To give you some examples: The controller model field of
.Conner drives contains plain text with the complete drive
description like

‘“‘Conner Peripherals 40 MB - CP3044°°,

Seagate’s IDE drives offer only a short cryptic ID string, which
sometimes doesn’t even contain the drive type.

A very interesting difference, even between drives of the same
manufacturer, shows up with the *‘Number of cylinders/heads/
sectors’’ fields. Some drives show their physical values there,
independent of the active emulation mode (for example, my
CP-3044 does so0). Other drives always show the parameters of
the active emulation, or those of the default emulation mode.
Surprising especially with my drive is that the physical param-
eters can’t be used for drive operation! As a result, the data
delivered by this command must be considered carefully. How-
ever, it’s normally possible to extract useful information by
reading the drive’s ID information for several different active
emulation modes.

Read/Write Sector Buffer (E4h/E8h):

These are the last two common IDE commands. With these
commands it’s possible to read or write the drive’s sector buffer
directly. I haven’t found any use for these yet, but probably
there is (at least was) one. In my opinion, these commands are
useless for normal operation.

Block Mode Commands (Read/Write/Set Multiple, C4..Cé6h):

By the use of these commands, one can access disk data in
larger blocks than the physical sector size. Several sectors are
grouped together and handled as a block of data. However,
many drives don’t support this mode. I don’t have detailed
information regarding the parameters. If a particular drive
supports the block mode, the details will surely be printed in
its user manual.

Power Commands (E0..E6h, except E4h):

The power commands are not supported by every IDE drive.
However, if they are, they are normally compatible. The power
commands are commonly used within portable computers
(laptops, notebooks, handhelds, or whatever the names are).
They allow for automatic or manual changing between nor-
mally four operation modes:

Read/Write Mode (4.2 W) complete drive circuitry operating
Idle Mode (2.0 W) motor running, r/w circuitry turned off while
no command is active

30

Standby Mode (0.5 W) motor stopped, r/w circuitry turned off,
interface active
Sleep Mode (n/a) everything stopped, exit only with reset

The power requirements mentioned in this table are those of
my Conner 42-MB drive. While no r/w operation is in progress,
the drive normally is in idle mode (also when being reset).
Read/write mode is always automatically entered when a r/w
command is issued; after completion of that command, the
drive enters idle mode again.

When the drive is put into standby mode (manually or auto-
matically, see below), the drive (motor, r/w circuit) is shut
down while the host interface remains active. So when a
command is issued which requires motor or r/w operation, the
appropriate circuitry is automatically switched on again.

Once the sleep mode is entered, there is no way out except for
reset by means of hardware or software. This is because even
the drive’s local processor and interface controller are stopped,
so there is no way to communicate with the drive. (However,
the task file can still be read.)

As mentioned above, there are six power commands:
Set Standby Mode (EOh), Set Idle Mode (Elh):

The drive will enter the desired mode immediately. There are
no parameters required. If the drive already is in that mode, the
command will have no effect.

Set Standby (E2h) or Idle (E3h) Mode with Auto-Power-Down:

These commands take a parameter in the sector count register.
If that parameter is non-zero, the Auto-Power-Down (APD)
feature is enabled (with a zero value, APD is disabled). When
one of these commands is issued, the drive immediately enters
the desired mode. If APD is enabled, the drive will automati-
cally enter standby mode after being in idle mode without
activities for a given period of time. This delay can be specified
by means of the parameter for these two commands: the SC
register must contain the delay time in counts of 5 seconds. The
minimum delay of 60 seconds will be set if the SC register
contents is smaller than 12, With a maximum value of 220, the
maximum delay is about 18 minutes. These limits again apply
to my particular drive; other drives may have other specifica-
tions.

Read Power Mode (ESh):

This command reads the actual mode. If the motor is spinning
(meaning that the drive is in idle mode), the value FFh will be
returned in the SC register. Else (when in standby mode or just
spinning up) a zero value will be placed in the SC register.

Set Sleep Mode (E6h):

This command puts the drive into sleep mode immediately.

The Computer Journal / #66

Every internal activity is terminated and all circuitry switched
off.

There are some more power-related commands, having the
command codes F8..FDh (except FCh). Their general meaning
is similar to the power commands described above (E0..E5Sh),
except that the time delays are specified more exactly (in
counts of 0.1 seconds). However, I have not yet seen a drive
which supported these commands, and I don’t have detailed
information about them.

Cache On/Off (EFh):

This is the last command which I will explain here. It is used
for enabling or disabling the automatic read-ahead feature
(read cache) of the drive. The write precompensation register
(WP) is (mis-)used as a parameter register for this command
(today, this is the only use of the WP register). If the WP
register contains AAh, the feature is enabled; with 55h, it is
disabled. Every other value will result in an aborted command
error. After reset, the drive defaults to read-ahead feature
enabled.

Whew -- this was a lot of stuff! (I hope it was not too hard.)
However, now you should know about IDE commands in detail
(if you didn’t fall asleep while reading). Before we start prac-
tical work, here, for the programmers, are the short-form tables
that I promised.

Table 1: Task File Registers (as printed in part 11)

JCS0/CS1 A2 A1 AQ Addr. Read Function Write Function
1F0 Data Register Data Register

1F1 Error Register (Write Precomp Reg.)
1F2 Sector Count Sector Count

1F3 Sector Number Sector Number
1F4 Cylinder Low Cylinder Low

1F5 Cylinder High Cylinder High

1F6 SDH Register SDH Register

1F7 Status Register Command Register
3F6 Alternate Status Digital Output

3F7 Drive Address Not Used

=2 000000O0O0O
-t ek e a2 OO0
—_. e OO =00
- g=0=20~0=0

O = s

Table 2: Error Register

Bit_Flag_Meaning
BBK Bad block mark detected
UNC Uncorrectable data error

IDNF Sector ID not found

ABRT Command aborted (status error or invalid
ommand)

TKO Track O not found during recalibration

ONWABOO

O —

The Computer Journal / #66

Table 3: SDH Register

Bit Flag Meaning

7 EXT Extension Bit. Always 1.
6-5 SIZE Sector Size. Always 01 (512 byte sectors).
4 DRV Drive bit. Master/single drive = 0, slave = 1.

3-0 HEAD Head field. Binary head number 0..15.

Table 4: Status Register, Alternate Status Register

Bit _Filag _Meaning
7 BSY Drive busy. Task file cannot be accessed.
6 DRDY Drive ready (up to speed and ready
for command).
5 DWF Drive write fault.
4 DSC Drive seek complete (actuator on track).
3 DRQ Data request (ready for data transfer).
2 CORR Corrected data (bit is set when data has
been recovered by use of ECC).
1 IDX Index. Active once per disk revolution.
0 ERR Error. See other bits and error register.

Table 5: Digital Output Register

Bit Flag _Meaning
2 SRST Software reset (active when set to 1).
1 JIEN Interrupt enable (active when set to 0).

Table 6: Drive Address Register

Bit Flag Meaning

7 - not driven (for PC floppy compatibility)
6 /WTG Write gate (active when 0)

5-2 /HSx Head select 3..0, one’'s complement of

active head
/DS1 Drive 1 selected (active when 0)
/DS0 Drive 0 selected (active when 0)

QO =

Table 7. Commonly needed Commands with Parameters

Code _Command Parameters
1x Recalibrate D

20 Read Sectors with retry SC,SN,C,D,H
30 Wirite Sectors with retry SC,SN,C,D,H
40 Verify Sectors with retry SC,SN,C,.D,H
50 Format Track C,DH

7x Seek CD

90 Exec Diagnostics D

91 Set Drive Parameters SC,(C),DH
Ex Power Commands, see below

E4 Read Sector Buffer D

E8 Write Sector Buffer D

EC Identify Drive D

EF Cache On/Off D.wWP

31

Power Commands:

EO Standby Mode -
E1 Idle Mode -
E2 Standby Mode with APD SC
E3 idle Mode with APD sC
ES Read Power Mode (SC)
E6 Sleep Mode -

Table 8: Error Conditions

. When an error occurs, the error flag in the status register
(ERR) is always set. For the different groups of commands, the
following status/error flags are valid then:

Recalibrate ABRT,TKO,DRDY,DWF,DSC
Read, Verify BBK,UNC,IDNF ABRT,DRDY,
DWF,DSC,CORR
Read Long, Write, Write Long BBK,IDNF ABRT,DRDY,DWF,DSC
Format, Seek IDNF,ABRT,DRDY,OWF,DSC
Diagnostics, Initialize, R/W Buffer,Identify, Set Cache
ABRT
Invalid command ABRT

Table 9: Interrupt Conditions

The drive generates an interrupt (if enabled) under the follow-
ing conditions:

Recalibrate after successfully reaching track 0

Read each time DRQ is set

Write when DRQ is set, from second sector on
(only when multiple sectors are written)

Verify after completion for all sectors

Format Track after completion

.'Seek, Initialize, Power Commands (except Sleep)

after command is issued/initiated
when drive is in sleep mode
when data is ready for reading

Set Sleep Mode
Read Buffer, Identify

Now let’s come to the example routines for accessing an IDE
drive. These examples are given as Turbo-Pascal (3.0) source
(based on my IDE test program). They apply to the use of my
IDE interface board (described in TCJ #56), so there always are
512 data bytes transferred instead of 256 data words.

In all examples, named constants are used for accessing the
IDE registers at their particular I/O addresses. These named
constants must be declared elsewhere. Their names are derived
from the related IDE register names and IDE commands.

The examples are programmed in a very modular fashion so
that they are easy to understand. For implementation in a
system BIOS, for example, most of the subroutines will contain
so little code that the complete read/write routines will nor-
mally be coded inline. In addition, a real implementation,
unlike these examples, will have time-out functions in most
loops. If someone is interested in the IDE driver of my CPU280
system BIOS, please contact me (however note, it’s Z280
assembly language and commented in German).

32

1. General access: Wait for drive ready / wait for data request

In Pascal, two small procedures serve this purpose. In assembly
language, I use two macros instead, because the subroutine
calling overhead would be too much.

procedure Wait_Ready;

begin

repeat until port[IDE_CmdStat]<=128,;
end;

procedure Wait_DRQ);

begin

repeat until port[IDE_CmdStat] and 8<>0;
end;

2. General access: Command issue

procedure IDE_Command(Cmd:byte),
begin

Wait_Ready;
port[IDE_CmdStat]:=Cmd;

end,

3. General access: Reading/Writing the sector buffer

In the Pascal implementation, the two functions return a Bool-
ean value which is true if there were no errors during r/w of the
buffer.

Both routines require the drive to be ready for data transfer!

function Read_SecBuf(var Buf:BufType):boolean;

var i : integer;

begin

Wait_DRQ;

i:=port{IDE_Data]; (* specific to my IDE interface board *)
for i:=0 to 511 do Buf]i]:=port[IDE_Data],
Read_SecBuf:=port[IDE_CmdStat] and $89=0;

end;

function Write_SecBuf(var Buf:BufType):boolean;
var i : integer;

begin

Wait_DRQ);

for i:=0 to 511 do port[IDE_Data]:=Bufli];
Wait_Ready;

Write_SecBuf:=port[IDE_CmdStat] and $89=0;
end,;

The Computer Journal / #66

4. General access: First access, initialization

procedure HD_Init(Cyls,Heads,Secs:integer),

begin

port[Dig_Out]:=6;
delay(10);

_ port[Dig_Out]:=2;
Wait_Ready;
port[IDE_SecCnt):=Secs;
port[IDE_CylLow]:=lo(Cyls);
port[IDE_CylHigh]:=hi(Cyls);
port[IDE_SDH]:=pred(Heads)+$A0;
IDE_Command(Cmd_Initialize);

"end,

(* Drive Software Reset *)

5. Data access: Single sector read

function HD_ReadSector(Cyl,Head,Sec:integer; var
Buf:BufType):boolean;

begin

Wait_Ready;

port[IDE_SecCnt]:=1;

port[IDE_SecNum]:=Sec;

port[IDE_CylLow]:=lo(Cyl);

port[IDE_CylHigh]:=hi(Cyl);

port[IDE_SDH]:=$A0+Head;

IDE_Command(Cmd_ReadSector);
HD_ReadSector:=Read_SecBuf(Buf);
end;

7. Data access: Single sector write

function HD_WriteSector(Cyl,Head,Sec:integer; var
Buf:BufType);

begin

Wait_Ready;

port[IDE_SecCnt]:=1;
port[IDE_SecNum]:=Sec;
port[IDE_CylLow]:=lo(Cyl);
port[IDE_CylHigh]:=hi(Cyl),
port[IDE_SDH]}:=$A0+Head,
IDE_Command(Cmd_WriteSector);
HD_WriteSector:=Write_SecBuf(Buf);
end;

Now we have reached the end of the ‘‘behind IDE’’ article
series. In another column I will describe my revised IDE
interface board for the 8-bit ECB bus in somewhat more detail
than in TCJ #56. This will include a TTL equivalent of the
GAL contents, for those who are inexperienced in reading a
Boolean equation design, or who want to build it up using
discrete logic.

For a list of abbreviations, see parts II and III of this article.

- Mr. Kaypro. Continued from page28

is to use wire wrap sockets and leave them a little ways above
the board so you can reach under with the solder using the iron
on the end of the lead under the board and letting the heat travel
up the lead. A special thank you to Eric Craig of C&C Machine
for doing the plotting and letting me do some of the layout
work. Thanks Eric!

Chuck

I hope this looks good enough to be used in one of your
articles, another set of plots will be coming soon as I was not
happy with the set you received earlier. Ed.

Rest assured Ed, and the new plots will be published in the next
issue. The list of parts that will be needed to complete the
project is presented last.

The circuit board can either be one you make using the plots
printed, or one of the prototype boards listed above. Both
218905 and 207906 are 3/4 hole per pad double sided, with
through plated holes, while 462905 is single sided. 462905
will work just fine, but will require more thinking, when it
comes to connector layout.

The Computer Journal / #66

For those of You who elect to manufacture your own printed
circuit board, good luck. For those of you who elect not to, hang
loose and we’ll finish construction and installation in the next
issue.

P.S. I owe some of you replies to your letters, keep the faith,
and I’1] get to it “‘real soon now’’. CBS

Foundation lea . custom printed circuit board OR
SYNTAX # 218905 or 207906 or

462905

ICs lea. 7406
lea. 7445
lea. 7415151

Sockets lea. 14 pin dip

2 ea. 16 pin dip

Resistors lea. 8 section sipp 4.7k per section
Sea. 4.7k .0125 watt

Miscellaneous lea. 8 position dip switch
lea. 34 pin IDH pcb connector
lea. 34 conductor double in-line header
lea. 0.01 microfarad disk ceramic capacitor

33

Small System Support
By Ronald W. Anderson

A “‘while” has gone by since my first
column appeared, and I have received
three letters in response. That’s not a
whole lot to go on, but here goes.

I thought I'd start out with something I
found interesting and with which I dis-
agree heartily. The subject is the C pro-
gramming language, or rather someone’s
interpretation of how to use it properly.

I have a book, ‘“The Waite Group’s C++
Programming’’ by John Berry, published
by Howard Sams & Company, 1988.
The subject is the use of pointers rather
than array notation. Let me quote:

‘““When most programmers design a
function that uses one or more character
string parameters, they usually define
them as pointers to a character. For ex-
ample:

void example(char *s1, char *s2)

represents the header line of such a func-
tion. The only other way to declare char-
acter string parameters is to declare the
parameters as character arrays. However
this is inefficient -- even in traditional C
-- because the compiler merely converts
them into memory address references or,
in other words, a pointer. Thus the only
real way to handle a character string
parameter is by a call by reference. This
is equally true for other arrays; however,
character strings represent the most com-
mon case.”’

If I am reading what I think I am, they
are saying that because the compiler
converts array notation to the same code
as pointer notation, I should use pointer
notation. As a long time user of lan-
guages that use arrays, I find:

34

void example(char stringl[], char

string2(])

to be less cryptic. If it doesn’t matter
which I use, and the compiler is going to
convert either to the same code, I'll use
the clearer notation any day thank you.
In these days of super whiz 66 MHz
computers, who cares if the compiler
has to work just a tiny bit harder?

To be sure, I am exaggerating a little
here. I understand how pointer notation
relates to array notation, but I prefer to
use array notation.

Obviously I'm not a true C purist. I'm
sure somewhere must hang a sign that
says ‘‘Real C Programmers use Point-
ers’’, or more probably ‘‘Real C Pro-
grammers Don’t Use Arrays’’. My point
is that the reason given here NOT to use
array notation is in my mind a better
reason TO use them! The following test
program in C contains several ways to
print to a terminal, a character string
terminated by a null (ASCII code 0), as
are all strings in C:
// test of string printing.

char string[] = {“This is a test\n" };

void main()

{
char*s;
intn;

n=0;

The first and third versions are the array
and the pointer versions respectively. The
second and fourth are shorter and more
cryptic because putchar() returns the
character that it has just “‘put’’. That is,
you can invoke the function, increment
the index, and test for a null all in the
same statement. (Ain’t C wunderful?)
The only drawback to this arrangement
is that you have putchar(0) or null by the
time you detect that you are at the end of
the string. Turbo C interprets null as a
space which it puts at the beginning of
the next line on the monitor, since the
null follows the newline (\n).

I’ll have to admit there’s not much dif-
ference with such a simple example. The
pointer notation avoids an index vari-
able, but rather ‘‘sneakily’’. The nota-
tion *s++ doesn’t increment the location
pointed at by s, but the value of s itself.

// define a string to print
/I C adds the NULL automatically

while (string[n]) putchar(string[n++]);

n=0;

while(putchar(string[n++]));

s = &string[0];
while (*s) putchar(*s++);

s = &string[0];
while (putchar(*s++));
}

II's = &string ought to work but gives warning

The Computer Journal / #66

(If I remember correctly, the notation
(*sy++ increments the value pointed at
by).

The above is a working program that
compiles and runs under Turbo C ver-
sion 3.0. (I'm using the ANSI C com-
piler, not the C++ here). As you can see
you have to define the text string and
then point s at the string. There’s not
much reason here to prefer pointers over
arrays. Now some C whiz please write
" me and tell me I’ve been clumsy with my
- example and that pointers are much better
to use ‘‘because’’...

6800 / 6809 Subjects

I received a plea for help recently from
someone who has a couple of old SWTP¢
6800 / 6809 systems and is looking for
software for them. I'm trying to help
him out, though I stopped using 6800
versions of software in about 1979 or
1980. I really don’t have any 6800 ver-
sion software around anymore. Maybe it
was shortsighted of me to lose it all, but
back then who was thinking of what
computers would become now and the
possibility that some of these would be-
come collector’s items and museum
pieces? Can someone out there help me
. locate any 6800 software information?

I first suggested that my correspondent
contact Peter Stark for a copy of 6809
SK*DOS which runs exactly like FLEX.
I am going to send him a copy of my
PAT text editor along with a hardcopy
printout of the manual I had back in the
6809 days. Somehow I've lost the files
ondisk. I have later manuals for the 68K
version and for the PC version, but 1
couldn’t find the 6809 version.

One problem my correspondent had was
that companies that are out of business
generally move out of their offices. He
had sent out over 50 letters to people
who had advertised in ‘68 Micro Jour-
nal, and all but three or four were re-
turned as undeliverable. TSC responded
that they no longer support FLEX and
software that runs under it. I doubt that
to be a specific enough statement to be
considered a release to public domain.
Maybe if someone wrote a letter explain-
ing that there’s still a lot of interest out

The Computer Journal / #66

there, and that our ‘‘library’’ would
charge and pass along a royalty to be set
by TSC? Perhaps they would release
much or all of their old FLEX software!

Perhaps the message here is that if you
buy an old computer, try to buy all the
software with it. It is legal for the regis-
tered owner of software to sell (or give
away) his copy provided he doesn’t also
keep a copy for himself. In the case of
selling the hardware, it hardly makes
sense to keep the software. That prob-
ably means you shouldn’t buy an old
computer from someone who never used
it very much, since he won’t have much
software for it. Aside from that, a well
used computer is more likely to be in
working condition. Storage in a cold
garage or attic for a few years can do
horrors for electrolytic capacitors in the
power supply not to mention those tin
plated connectors that SWTPc used for
so long. Those connectors were the even-
tual demise of my old original computer.
I couldn’t keep it running long enough
to edit a file. It would lock up and I
would go and ‘‘wiggle the cards’’ to get
it working again for a while. Moisture
can ruin a power transformer such that
it will run for several hours and then
suddenly go.up in smoke due to insula-
tion breakdown.

By the way, I suppose you have all heard
that integrated circuits run on smoke?
Someone deduced that from the fact that
if you let the smoke out they don’t work
anymore!

In the process of poking around my old
disks I ran across my assembler working
disk with some goodies on it. I'll be
presenting some of them here. 1 indi-
cated earlier that I switched to the 6809
in about 1980. My switch was some of
the cause of the intermittent operation of
my old SWTPc computer. Apparently (I
heard later) those tin plated connectors
are good for half a dozen insertion -
removal cycles. When I first switched
over, I set up my computer to run either
the 6800 processor board or the 6809. 1
added a switch to the I/0 address decod-
ing changes I made in the motherboard.
Swapping cards soon wore all the tin

plating off of the molex pins and I had
trouble forever after.

My advice regarding these connectors is
that if your computer works reliably don’t
remove the cards to clean the inside of
the case. Leave it alone until it fails. The
first try at curing an intermittent board
is to plug it onto a different slot in the
motherboard. Sometimes it is the align-
ment of the pins on the motherboard that
causes problems. If someone built the
computer from a kit, the pins might not
align precisely. It was easy to solder with
the pins not quite inserted all the way.
The holes in the circuit board were over-
sized and the connector could tilt while
soldering it in. To make matters worse,
the connectors for the ‘°SS-50°°
motherboard buss were supplied in ten
or twelve pin lengths so they were in-
serted in the mother board and soldered
in place in pieces. Anyway, try a differ-
ent location first.

The tin plated pins on the motherboard
can be cleaned by folding a piece of kraft
paper (i.c. from a brown paper grocery
bag) in half over the pins and rubbing it
back and forth along the row of pins
while squeezing slightly. Be careful not
to remove too much skin from your
knuckles via the adjacent rows of pins in
the process. You might argue that this
only cleans the connector pins on two
sides. The receptacles on the cards only
contact the pin on one of those two sides,
the side closest to the plug-in board.

I've cleaned the card edge connectors by
running a toothpick into each socket
position and rubbing a bit. If you do this
you can use some solvent. A little Naptha
works fine (but don’t smoke while using
Naptha, it is the main ingredient in
lighter fluid). Be careful not to bend the
spring contacts in the card edge connec-
tors too far. That is, use thin toothpicks
of the flat type and don’t overdo the
cleaning. All such efforts on my part
seemed to help only for a while. I con-
sidered soldering the boards permanently
to the motherboard, but soon decided
that would make it pretty hard to do any
future repairs.

While SWTP¢ used tin plated connec-
tors for all of their computers, GIMIX

35

used gold plated ones. If you remember
those times, there was a real premium
on gold for plating connectors, and they
were quite a bit more expensive than the
tin ones. I remember that a local com-
pany who make computers for industrial
use had decided that the tin plated con-
nectors (those same Molex connectors
used by SWTPc) were just as reliable as
the gold ones. I think they later switched
to gold as well, though they were rather
. quiet about it. Actually the gold plated
connectors are rather fragile too. They
will wear out before very many removals
and insertions. They won’t however,
tarnish or corrode and become poor con-
tacts if they are left alone. If the system
works, don’t try to improve it by clean-
ing. Anything you do will result in wear
on the contact surfaces. The old saying
applies “‘If it ain’t broke, don’t fix it’’.

Enough advice for this time. Are there
any of you out there using FLEX on a
6809 system? If so, I have a bunch of
utilities I wrote over a long period of
time, that I would be interested in shar-
ing with you. There’s a KILL utility,
same as DELETE except it doesn’t ask
you twice if you are SURE. It does re-
quire a full filename including exten-
sion, however.

" Then there’s a RENUM utility that reads
a BASIC program file (BAS extension)
and renumbers it. The utility works for
TSCExtended BASIC. I used it with the
older BASIC before Extended BASIC
existed. XBAS as I called it, has a built-
in RENUMBER function that works
without leaving the BASIC interpreter,
but it only renumbers by tens starting
with line ten. My file renumber version
is run on a file while out of the BASIC
environment. You can specify a starting
line number and interval. The old file is
renamed to extension .BAK for backup
and the new one retains the original file
name. I updated it to work with the new
features of BASIC, but I don’t quite re-
member whether I ever got the ON
ERROR feature working with it. It has
one nice feature, that you can scramble
lines with a text editor. That is, you can
move a subroutine, for example from the
end of the program to the beginning
(they run faster that way) with no regard

36

for the line numbers being out of se-
quence. RENUM will renumber them
back into ascending sequence.

I vaguely remember some condition
where it didn’t properly renumber a line.
At any rate, if any of you are interested
ina few new utilities, send me a note and
a 5.25" disk, and tell me whether you
want single or double sided / density. I’11
include assembler source code for all of
the utilities I can find in my archives. If
I need more than one disk, I'll supply a
second.

I received a letter very recently from a
new subscriber to TCJ asking me if my
PAT editor would run on a KAYPRO.
Unfortunately, 6809 software doesn’t run
on an 8080, as most of us know. The
letter points up the need for some begin-
ner material. We all remember, no mat-
ter how far we are along in the comput-
ing area, how it was to start. It was
confusing to read more advanced mate-
rial and we were all overwhelmed by the
new terms that were thrown at us from
every side.

Beginner’s Notes

Since this is a little short at this point,
I'll begin a section for beginners. If Bill
wants to cut it for the month he can do
that.

I remember my first computer. As I
mentioned a few times ago it was a KIM-
1 single board computer. It had about
256 bytes of memory if I remember cor-
rectly. The Saturday after I brought it
home and fired it up, I had poked around
with the monitor a little, and I decided to
write a simple program to do something
or other, but at the end I couldn’t figure
out what to do. Should I send the proces-
sor a HALT instruction? If I did that, I
wouldn’t be able to get it to run again. It
had not yet occurred to me that the com-
puter must always be running SOME
program or it would be ‘‘dead’’. The
answer came to me over a Pizza break
supper. When the computer is turned on,
it comes up running it’s ROM monitor
program which looks at the keyboard
and waits for the user to do something.
My program, at it’s end simply had to
jump back to the monitor program. I

soon found the ‘‘how’’ in the excellent
manuals that came with the KIM-1 and
I'was able to load my program by means
of Hexadecimal codes, run it, and return
to the monitor.

Of course these days we have another
level of “‘standby”’, the disk operating
system. In FLEX or SK*DOS09 all it
takes is a simple jump absolute to the
address $CDO3 known in FLEX as
“WARMS’’ the warm start entry point.
Having done that, FLEX is ready to load
and run another program from a disk.

Let’s talk for a moment about the differ-
ent levels of programming that are or
have been used on computers. Way back
in the early days of computers (and re-
peated in the early days of the micropro-
cessors in the era of that KIM-1) there
was machine language programming.
That means that the programmer actu-
ally calculated the machine codes neces-
sary to make the program run. A pro-
gram might look like a string of hexa-
decimal numbers, since that is exactly
what it was. The KIM had provision for
entering numbers in hex, and so was a
bit easier to program than if it had re-
quired binary entry. At any rate, the
programmer had to calculate the length
of a branch for a branch instruction (i.e.
the number of machine instructions that
had to be skipped to arrive at the desired
place in the program) and insert it as
such. Negative branches involved count-
ing backwards from Hexadecimal FF etc.

Early programmers got tired of trying to
remember that $C6 meant ‘‘load accu-
mulator A’ with the value immediately
following it, for example, and devised a
Mnemonic system. LDA # would do it,
and was much easier to remember than
the actual Hexadecimal code. Inciden-
tally, $C6 isn’t necessarily the correct
code. Though I programmed a 6809 for
a long time, I presently don’t remember
any of the hex codes for instructions
except that $20 for a BRA instruction
(branch unconditionally or always) sticks
in my mind.

At any rate, someone wrote an Assem-
bler program. With it, you still program
at machine level, but you do it with
Mnemonic codes that are easier for people

The Computer Journal / #66

to read. The assembler program reads a
*‘source file” and creates the *‘object
file’’ machine code.

Later, still more convenient ‘ ‘languages’’
came along. These were called High
Level Languages, which were one more
-step removed from machine code. One
could write a compiler for a language
such as Fortran, which would generate
code for a 6809, and another for an 8080.
Though the 6809 couldn’t run the 8080
object code and vice versa, a 6809 could
run the code generated from Fortran
source code and the 8080 could run the
code generated by it’s specific Fortran
compiler, from the same source code
with a few limitations.

High level languages may be written in
two different ways. There are interpret-
ers and compilers. Any given language
may be written as either. BASIC is usu-
ally written as an interpreter. The BA-
SIC interpreter takes your source code
Jjust as you have written it, and interprets
it line by line as the program runs. That
is, it analyzes what you have told it to do
and jumps to the appropriate machine
routine in the interpreter to execute the
action you have defined. Interpreters are
slow because, for example, if you have a
loop that executes 1000 times, it has to
interpret the lines within the loop 1000
times. On the other hand you don’t have
to go through a compile step before you
run your program, so program develop-
ment is rapid.

A compiler on the other hand reads the
source code and generates machine code
in the form of an object code file. The
machine code generated by the compiler
runs much faster than the interpreter.
I’ve seen speed differences of more than
ten times.

There is another form that is sort of
between the two. A simple compiler of
some sort generates a pseudo code (called
a P code), which is a simplified interme-
diate code that is suitable for an inter-
preter when the program runs. Essen-
tially it does a partial compile and then
interprets the code produced by the com-

The Computer Journal / #66

piler. These are generally intermediate
in speed between an interpreter and a
compiler. These days P-code compilers
are raihe” rare.

C has .:-.2n to be one of the most
“‘portable” languages. It’s definition if
you include the *‘standard library’’ in-
cludes the syntax for file handling and a
lot of other useful things left dangling in
Pascal for example.

Pascal is a fine language, (in fact my
first preference) but file handling was
left to the implementors, so opening a
file in one version of a Pascal compiler
might be quite different than doing the
same thing in another. On the other hand
Pascal is a simpler language than C, and
it may be compiled VERY fast. Ifyou’ve
ever run Turbo Pascal and Turbo C, you
know that the Pascal compiler is like
lightning compared to the C compiler.
The reason is simply that the C compiler
has to do a great deal more to get from
the source code to the object.

For youbeginners, though Gertrude Stein
said ‘‘a rose is a rose is a rose’’, unfor-
tunately a processor is not a processor is
not a processor. That is, a 6809 won’t
run 8080 code, or even 68000 code for
that matter. They can all be programmed
using a compiler such as a C language
one, and the C “‘source code’’ may well
be identical for all of them, but the com-
piler can’t be identical. Each has it’s
own arrangement of hardware and it
requires different machine codes to run
that hardware. Each has a different com-
piler to produce the different machine
code from the same source code instruc-
tions.

Just to make matters a bit more compli-
cated, there are things called cross com-
pilers that can run on one machine but
generate code that runs on another. Early
along, there was a cross assembler that
ran on a 6809 under FLEX and gener-
ated code for a 68000.

Well, perhaps this is enough for this
time. I hope these feeble efforts might
have given you a glimmer of understand-
ing. We’ll continue little sections spe-
cifically for you in future columns.

(TCJ MARKET PLACE)

Advertising for small business
First Insertion: $25
Reinsertion: $20
Full Six issues $100
Rates inciude typesetting.

Payment must accompany order.

VISA, MasterCard, Diner's Club,
Carte Blanche accepted.

Checks, money orders must be
US funds. Resetting of ad

consitutes a new advertisement

at first time insertion rates.
Mail ad or contact
The Computer Journal
P.O. Box §3§
Lincoin, CA 85648.0536

\. J

SUPPORT
OUR
ADVERTISERS
TELL THEM
"I SAW IT IN
TCJ"

%
6811 and 8051
Hardware & Software

Supporting over thirty versions
with a highly integrated
development environment.,

Our powerful, easy to use
FORTH runs on both the PC
host and Target SBC with very
low overhead

Low cost SBC's from
$84 thru developers systems.
For brochure or applications:

AM Research
4600 Hidden Oaks Lane
Loomis, CA 95650
1(800)947-8051
sofia@netcom.com

37

MULTIPROCESSING FOR THE IMPOVERISHED

by Brad Rodriguez

‘Part 3;: Mid-Course Corrections

‘‘{Tjnnovation really happens by blundering through to success
on the back of one’s mistakes.”’
- Gifford Pinchot I1I, /ntrapreneuring

BRAD’S FIRST MISTAKE

TCJ reader Andrew Houghton was quick to spot a potentially
disastrous goof in my 6809 Request/Grant logic. The 6809 is
a dynamic processor, which means its internal registers are like
dynamic RAM -- they need to be constantly refreshed. This
refresh occurs whenever the internal clock is running. But,
unlike the Z80, the 6809 stops its internal clock when the
MRDY (a.k.a. WAIT\) line is held low. The result: hold
MRDY low for more than 16 usec, and the CPU registers
become garbage! (This interesting fact is contained in a teeny
tiny footnote in the 6809 data sheet.)

You can see that if eight CPUs are contending randomly for the
bus, the odds of one being “‘shut out’” for 16 usec or more are

- high. The solution has two parts: a) limit the amount of time
any one CPU can grab the bus, and b) force the processors to
use the bus in strict rotation. For example, if there are eight
CPUs, and each holds the bus for no longer than 2 usec, no
CPU will ever have to wait more than 16 usec for its turn at the
bus.

Part (b) is easy -- it affects only the design of the bus arbiter.
Part (a) is more tricky. Recall from the last article that the
Read-Modify-Write logic works by stretching every bus request
for two extra E cycles. Thus the bus is ‘‘held’’ until the Write
portion of the RMW begins. A side-effect is that the bus is held
for two E cycles after the write...a total of 5 E cycles for the
complete RMW operation. If the next instruction also uses
shared memory — or worse, is executing from shared memory
-- this stretched bus request may be continued by the next
instruction, and the bus may be held indefinitely.

What we really want is a circuit that stretches the bus request
only until the end of the Write. Since we don’t know which
memory references are RMW cycles, we’ll settle for a circuit
that stretches a bus request for only 3 E cycles, even if a second
access (the Write) occurs. In other words, we don’t want to
“‘retrigger’’ the delay if another access occurs during the
stretch period. I couldn’t think of such a circuit offhand, so |

38

dusted off my old college text and went through the full ordeal
of formal state machine design (see sidebar). Suffice it to say
that It Can Be Done, and the new delay circuit requires only
replacing the D flip-flops with JK flip-flops, and adding one
inverter (see schematic).

On a 1 MHz 6809, 3 E cycles require 3 usec, so up to five CPUs
can share the bus in rotation without violating the 16 usec limit
for any CPU. Using a 1.5 MHz 68A09 or a 2 MHz 68B09
allows eight CPUs.

BRAD’S SECOND MISTAKE

My second mistake was Thinking Small. I had decided that the
simplest possible CPU board would be best for TCJ. But
everyone who sends me mail seems to want the improved
ScroungeMaster II! So, at the risk of abusing the patience of
TCJ’s readers (and editor), I'm going to complete this series of
articles with the **SM II"”” design. If you’ve already bought
parts for the 6809 uniprocessor, you’ll be happy to know that
only the 2681 DUART, 75176 transceiver, and a 74L.S139 are
discarded. Ithink you’ll find the improvements worth the cost.

To keep our Esteemed Editor happy, I'll publish and describe
the six pages of schematics in three installments. In this
article, I will cover the (slightly revised) CPU, some new
memory mapping logic, and address decoding. Following that
will be memory, parallel /O, an interface to IBM PC bus
peripheral cards, and the bus arbiter. Third will be the serial
I/0 and some other frills.

THE REVISED CPU AND RMW LOGIC

Figure 1 shows the revised CPU circuit. Ul is the 6809,
unchanged from the uniprocessor design.

OFFBD\ comes from the address decoding logic, and is pulled
low during an access to the external bus. When this happens,
U7A and Ul14 generate a “‘stretch’” signal for two clock cycles
(see sidebar). When either OFFBD\ is low or STRETCH\ is
low, the REQ (*‘request’’) signal is output high by U6A. This
signal is sent to the bus arbiter, to indicate that this CPU desires
to obtain (or hold) the bus. With JP3 in the *“3CLK” position
(as shown), the bus will be grabbed for three E cycles, and
Read-Modify-Write accesses will be indivisible. If JP3 is

The Computer Journal / #66

moved to the “‘1CLK’’ position, the stretch circuit is disabled,
and the bus will only be grabbed for one E cycle at a time. (For
experimentation with other mutual exclusion schemes.)

If this CPU does not ‘‘own’’ the bus, GRANT\ will be high.
The combination of GRANT\ high and REQ high will output
a low from U6B, clearing all the flip-flops of U15. This will
“cause all the Q\ outputs to be high, one of which is jumpered
(via JP6) to U27A. This forces U27A to output a low, pulling
MRDY low and halting the CPU. This function can be dis-
abled (for experimentation) by jumpering JP6 to the bottom
(ground) position.

GRANT\ is pulled low when the CPU acquires the bus. This
releases the CLR input of U15, causing its outputs Q1\ through
Q4\ to go low in one, two, three, and four clock cycles, respec-
tively. JP6 selects how many clock cycles will be added before
the CPU completes the memory access.

When both GRANT\ and OFFBD\ are low (and thus OFFBD
is high), U7C and U6C pull the DRIVENBLA signal low. This
enables the three-state drivers on the external bus. Note that
neither GRANT\ nor OFFBD alone is sufficient: if GRANT\
enabled the drivers, and the bus is still granted to this CPU
when we read the on-board EPROM (for example), both the
bus transceiver and the EPROM would attempt to drive the
CPU’s data lines simultaneously, causing a ‘‘conflict.”” If
OFFBD\ enabled the drivers, this CPU could attempt an off-
board access and activate its bus drivers while the bus was
granted to another CPU, causing a conflict on the external bus.

The new external bus accommodates IBM PC peripheral cards,
which may, for their own purposes, pull IORDY low to stretch
the memory access. Obviously, this signal should be observed
only by the CPU which is on the bus, so U27B gates IORDY
with DRIVENBL\: both must be low to assert XWAIT high
(“‘external wait’’). XWAIT is logically ORed with the *‘inter-
nal wait’’ signal by U27A: when either wait is requested, the
CPU’s MRDY input is pulled low.

IBM PC peripheral cards may also assert an active-high inter-
rupt. One of the five interrupt signals on the PC bus is selected
by a jumper (not shown here) as the signal XIRQ. XIRQ is
inverted to active-low by U27C. It may then be jumper-routed
to either the CPU’s IRQ\ input, or IRQ4\, an auxiliary interrupt
input of an I/O chip. U27 is not open-collector, so if the
external interrupt is connected to IRQ\, no other interrupt
source should also be connected to IRQ\. JP4 can be removed
entirely if external interrupts aren’t used.

JP5 can connect the REQ signal to a programmed output pin,
to allow experimentation with software request/grant schemes
rather than hardware. For standalone use (not plugged into a
bus), U6, U14, U15, and U27 may be removed. (MRDY is then

The Computer Journal / #66

pulled up to +5 by R9.) Terminal block J1 is a power connector
for standalone use.

MEMORY MAPPING

The ScroungeMaster II expands the 6809 address space to 1
MB, and allows both memory and I/O access to IBM PC
peripherals. Figure 2 shows the address generation and decod-
ing logic. The 6809’s 64K memory space is divided into nine
regions:

address

0000-0FFF “page 07, 4K)

1000-1FFF “‘page 1”’, 4K)

2000-2FFF “‘page 27°, 4K)each of these 4K ‘‘pages”
3000-3FFF “‘page 3, 4K) can be ‘‘mapped”’
4000-4FFF “‘page 4”°, 4K) to any 4K region in a
5000-5FFF “‘page 5°, 4K) 1 MB address space
6000-6FFF ‘“‘page 6, 4K)

7000-7FFF “page 7, 4K)

8000-FFFF fixed EPROM region, 32K

The addresses from 8000-FFFF are ‘‘unmapped’” -- the raw
physical address lines from the 6809 CPU are connected to the
EPROM, so that whenever the program reads 8000-FFFF, it
always gets the EPROM. The addresses from 0000-7FFF are
“‘mapped’’ -- they are passed through a circuit which converts
the 16-bit address from the CPU (actually 15-bit, since we
know A1lS5 is zero) to a 20-bit address.

This is done by U2 and U3, a pair of 745189 16 word x 4-bit
high speed RAMs. Assume for the moment that the TASK line
is pulled high (jumper JP2 removed). When the CPU outputs
an address, bitsA12-A14 select one of eight locations in the fast
RAM. Eight bits are output from that location (four from U2,
and four from U3). These bits are the high eight bits of the
‘“‘mapped address,”” MA12-MA19. Every chip except the
EPROM uses these as if they were the “‘real’’ address bits
output by the CPU. (Note that the low twelve address bits A0-
All are unchanged, and are used by all chips.)

Suppose that these eight locations contain hex 12, 34, 56, 78,
9A, BC, DE, and FO, respectively. Then, when the program

reads 0000-OFFF, it actually gets 12000-12FFF;
“ 1000-1FFF, ‘¢ * *“ 34000-34FFF,
“ 2000-2FFF, < ¢ *“ 56000-56FFF,
o 3000-3FFF, *© ¢ *“ 78000-78FFF,
“ 4000-4FFF, - ** ““ 9A000-9AFFF,
“ 5000-5FFF, « ¢ ‘“ BCO000-BCFFF,
“ 6000-6FFF, “° °* *“ DEO00-DEFFF;
° 7000-7FFF, ** *“ FO000-FOFFF.

The 6809 can only access 32K of ‘‘mapped’’ memory at any
one time (in eight 4K chunks), but by rewriting the mapping
RAM (U2 and U3), all of a 1 MB address space can eventually

39

be reached. (Note that U2 and U3 completely ignore Al5, so
they remain active even during EPROM accesses.)

The mapping RAM is written by a Write to an address in the
EPROM space (8000-FFFF, A15 high). U7D and U8B detect
the combination of A15 high, R/W\ low (write), and E high
(data strobe), and produce the WRMAP\ signal. The location
which is written depends upon A12-A14. Thus, to write the
first mapping RAM location, write a byte to any address in
8000-8FFF.

to program the map for 0000-OFFF, write location 8xxx.
oo e 1000-1FFF, * ‘e 9XXX.
o e 2000-2FFF, * O AXXX.
s e 3000-3FFF, *¢ “ Bxxx.
A 4000-4FFF, 0 Cxxx.
s e e 5000-5FFF, * “ Dxxx.
e e e 6000-6FFF, “ Exxx.
Ee e e e 7000-7FFF, * “ Fxxx.

Since the 745189 has logically inverted outputs, you actually
have to write the complement of the desired data to the map-
ping RAM. So, for the example above, you would write hex
ED, CB, A9, 87, 65, 43, 21, and OF, respectively.

Finally, the TASK input is connected to a programmable
output bit on one of the I/O chips. When a ‘1’ is output, the
last eight registers in the 74S189s will be used for mapping.
When a ‘0’ is output, the first eight registers are used. This
means that two independent maps can be stored in the mapping
RAM, and switched by changing one bit. This could be used
to support two tasks, or perhaps ‘‘main task’’ and *‘interrupt”’
memory maps. Note that you have to select map 0 before
writing map 0, and likewise for map 1.

ADDRESS DECODING
U8C generates the read signal for the EPROM when Al5 is

high, R/W\is high (read), and E is high (data strobe). All other
chip selects and data strobes are generated from the mapped

address. The 1 MB mapped address space is divided as
follows:

00000-DFBFF: external bus, memory references (895 KB)
DFCO0-DFFFF: external bus, I/O references (1 KB)
E0000-FFBFF: on-board RAM (127 KB)

FFCO00-FFFFF: on-board I/O (1 KB)

The 8086 used in the IBM PC distinguishes between I/O and
memory references. Since the 6809 has no such provision,
some segment of its memory address space must be assigned
to simulate the I/O signals. I have chosen to generate the /O
Read and Write signals when any location in the last 1K of the
external address space is referenced (the IBM PC /O space is

1K long). Memory Read and Write signals are generated for
the other 895K.

This complex address map requires a two-level decoding
scheme. Normally I prefer to minimize the number of levels
of decoding logic, since this is in a critical timing path. (I
particularly despise cascades of 74L.S138s.) In this case I'm
willing to incur the timing penalty of an extra level of NAND
gates.

U4 generates a signal, IOZONE)\, which is low when either the
external I/O space or the on-board I/O space is accessed. This
is easier to see if you look at the binary addresses for these two
regions:

external I/O:
on-board 1/0:

1101 1111 11xx xxxx xxxx
1111 1171 11xx xxxx xxxx

If MA17 is ignored, the logical AND of the remaining high
address bits will correctly identify both regions. U8A generates
a signal, ONBOARD\, which is low when either the on-board
RAM or on-board I/O is accessed -- that is, whenever the top
three mapped address bits are ‘1°.

The four possible combinations of IOZONE\ and ONBOARD\
identify the four memory regions: LCLIO (local /O), RAM
(local RAM), MEM (PC bus memory), and 10 (PC bus L/O).
These are combined in US with the R/W\ selection signal and
the data strobe E, to produce four Read strobes and four Write
strobes. You may wish to verify that all of the combinations
are correctly decoded. Note that, by the nature of the 74LS138,
only one strobe can be asserted at any time. Since the mapped
address is always generated, even during EPROM accesses,
these strobes must be blocked when Al5 is high (EPROM
space). This is done by feeding A15 into one of US5’s active-
low enable inputs.

The bus request logic needs a simpler signal. OFFBD\ is
asserted (low) whenever an address in the external bus space
isdetected. We can’t just use the logical inverse of ONBOARD\
since ONBOARD\ is unpredictable when accessing the EPROM.
OFFBD\ is asserted, by UTE and U6D, when ONBOARD: is
high and A1S is low.

When IOZONE\ is low and MA17 is high, the address is in the
on-board I/O space. When this occurs -- and, again, when A15
islow —-decoder U24 is enabled. This generates eight on-board
I/O chip select signals, depending on the values of A7-A9. In
effect, this divides the 1 KB on-board I/O space into eight 128-
byte regions. Each of these regions will typically be occupied
by one I/O chip. (You might think that the inclusion of MA17
is redundant, since LCLIOWR\ and LCLIORD\ are only gen-

The Computer Journal / #66

erated when MA17 is high. But some /O chips, such as the
6522, use R/W\ and E instead of the RD and WR signals, so
the chip selects must be qualified by MA17 too.)

It’s my habit to put all of the bypass capacitors (C1-C30) in one
place on the schematic. This was the page where I had some
extra room.

PC BOARDS

I’'m pleased to announce that -- thanks to the interest of many
TCJ readers -- I am proceeding with the layout and production
of a PC board for the ScroungeMaster II. Estimated cost is

US$20 each; the final cost won’t be known until the layout is
complete. If you would like boards from the first (and maybe
only) production run, please contact me at
b.rodriguez2@genie.geis.com on Internet, BRODRIGUEZ?2
on GEnie, or at Box 77, McMaster University, 1280 Main
Street West, Hamilton, Ontario, L8S 1C0, Canada.

REFERENCES

[HIL74] Hill, Frederick J. and Peterson, Gerald R., Introduc-
tion to Switching Theory and Logical Design, Second Edition,
John Wiley & Sons, New York (1974), ISBN 0-471-39882-9.
A classic, but probably superseded by many newer textbooks.

: | A digital circuit that contains flip-flops (or some other kind

s use the logic can often be simplified, if a “non-
obvxous“ pattem of 1s and Os is used.

ZQS:f m:héate the “next state’’, that i 1s, the state to which the
j cucult w:ll «change on the next clock pulse, for any given

Next state if

L Next state-if
_# state = OFFBD\low OFFBD\ high
1 | 2 1
2 elay cycle . 3 3
3 2nd delay cycle 1 1

- The circuit will remain in the Idle state until OFFBD\ is
. assert (low) Then the circuit will move through the two
 “delaying"’ states, regardless of the level of the OFFBD\
input. This is exactly the behavior we want -- the Write
cycle-does nat retrigger the delay.

. Atleast two bits (flip-flops) will be needed to represent three
states.. In this case, JK flip-flops require the least extra

STATE MACHINES

torage) is usually mlled a sequentzal c:rcuzt At: any ’

v : ’ - _to venfy that the clrcmt does step through all
. .For examme ‘here are the states of the new RMW stretch
]imrcult in tabular form There are only three states, num-

' the c1rc:u1t cannot remam “stuck” in: the unused fourth

devised; consult any good textbook o,n dxgl_;al ' gic ,d: ign.

logic. The operation of a JK flip-flop when the clock pulse ,
occurs is'as follows : '

inputs ~~ outputs

I K 90 o

0 0 ~~hold previous outputs
0 1 20 1

1 0 1 0 _

1 1 toggle previous outputs

In this case, I was able to have one of the flip-flop outputs
directly represem the “‘stretch’” signal (i.e., active during
states 2 and 3), and also to represent Idle as 00, so that
RESET\ could set the circuit to the Idle state. T encourage

you to take the schematic and the JK table given above, and

state,-if it:ever accidentally gets there.

Space prohibits a full description of the design techniques
I used. This circuit is small enough that the smxpl&et

Curmudgeonly observations: Alas, state. machme mmnm- -
zation is going the way of long division: before long, noone
will be taught how it’s done. They’ll just punch “divide”
on their: calculators, and click ‘‘minimize”’ on their PLD.
design programs. 1 call it ‘‘Engineering without Under--
standing.’”. Harrumph.

The Computer Journal / #66

41

g YN 388Us|FE63 87 AdEnJdgsd a3ed T o T
v HOS " dVW.LWd v XXXX XXXX XXIT TETT TIIT O/I OHYOE-NO 3HV dd-d-4—0034d4 SHAAVY TvNH3ILX3
A2 J3QWNN juawnooQazis WVH OHVOH~-NO =IHVY 448d4d4-00003 SHOOV TYNHILX3
~ XXXX XXXX XXTT TTTT TOTT SS323v 0/I SNE IHV H-44-40-00040 SHAAQY "TYNHILXI
ONIddVW AHOWIW ~ HOSS300ELILTINW 6088 S3SSIIDV AHOWIW SNE 3IHV 448-40-00000 SHOAY -IYNEILXI

8T3T 1

otJuelun

‘UozTTweH

'A90TIONHI3L IAISHNOIH-L

WYH ONIddVW FHL ILTHM XXXA-XXX8 sHAOav Ndd
WNOHd3 M2E 3HL adv3ad d4-544-0008 sSHOAv Ndd
d4-444-00000 SHOQV TIYNHILXI 0L Jd3ddVW ZFHV Jd4d42—-0000 SHOQY NdO

ANY L ART T ANT T ANT T ANT T ANT T ANT T AN "7 ANT T ANT 77 JNT T IRT 77 IRT] Jng 7] JNy | J0%] 901 «ljﬂ ANy T dNT T 4Nt T 4NT
L\/ﬁ/ﬁ/ﬁp\/ﬁ/ﬁu\/ﬁu\/ﬁfﬁ/ﬁfhhxﬁ p\/ﬁ/ﬁzﬁu\

225 123] _0e25] 630 8vo] £33 938l sTD] ryO[£13] 2VD0] TTI]_ 013 _89] 43 :mu J=1e) Q) W ~3<) W -)
) 0ISIWL
) N O0A
- { NCGEEED) T - =
NN ERREANENN EA u_sﬂ.Hu:d. ant 7] CWOUdE0 8 ot
NE NEUNE /H\ 5
03] 623 82D ¢23]_ 927 seb =5 LN
0ISIrs yOSTIPL
29A
avRER S \M/H]
oSy
_ g8n asn
N-117 o} 347
005IrL =
€7 N4 57 J0 BBISPZ
EAGEEE) 7
=7 \gevoaN k\m E
[(XOUvoaND > asn =l@
EY =7
BEISPL ot 0ISTIrL NN
S
AN mnw LA €29 b Yﬁ T8 « ov -3
r.Wll 5 2 WAL
ad g —d v vd —
0 3 BTVAN} BIYW T3 A PAIE BN
//ﬂﬂwwm/ T I3 ven ety s § 53 EC 07 EISH BN SISVL
N HMAYH &L VLIV L § Tp 3g -2 sg 1
~UHO TS ET » EETISWL 9TVW S 2 vad § N\
NEMBT 15T >—& ST €R
3 P L 00A ST 40 _BBISKL Y3dWnr
i M/d g ° ear
1T BTV Sra |
07 BTV
VASHA Z 7 SIVR EY &% 59T
m ; 5 S GIvW w« 2 AT
" : = o g by
£84 =13 \ € ZIYNW d v v
e0:Z £Y [E &%\ (2 TtV SIVW 179 £0 £O[ET €0
L > -1 B 8av\ A A ARG 0T 20 39A
ool =33 etvw 2 J 30 20rs T8 1\
ren ﬁ ST VA S v oa § N
En \
(165 " 0IvA =TT (2§ =L Told>
i (su o2+) Aud Ov+) 1 $A° B -T=A] =Y Tv—_[5t 0l
|<—— SAerep E | <—— sAeTep gz |j<—— Aelep T

The Computer Journal / #66

42

Jo 't 3@aysiresy ‘BT AJdenugad ra3ed
v HIS " NdOLWd v
A3Y JaqunN juawnaogiazts
Nd3 — HOSSIJ0HATLTINW 6089 NOISNILX3 MAH — LSIND3H YNHILX3
a3ty
; : TT NId=ONS 5
OTJB3UOD ‘UOITTWeH ‘A90TONHIZL SAISHMDIH—L b NId=33A — <=
pOSTIPL u%
00STW L
| “ g 12 4 Mot v |2 4 Ve
TENIATHE 50 e S \INvES 10— >ado— POSTL
; G8430] .,
_) r) r
“ 380 5 Z =T T T e T
” eEE EZSWZ €S2
! , artn vein vzn
! BIHMS I E T \HO13H1S
| aasnNn
| rOSPL 00STF 2
| = MT3E
| 2H3dWnr z R REY
m Sdr 2 3 JINO—5—0
: v edr ag440
LNVHS SNE — NOISNILXI AQuHW asn van EISER et
! S2157ps
10313s
31VLS 1IVM i mu_wAT\« Ss5ana N\LNYHS] 4NT° 4nT - >00718
2XS umo.quOIHlﬂll 3 4nd] NSO——0 SSA A2T 402§D TED TYNIWHAL ¥
0T & | vp AZT—O- -
8 2p— | EHV6 valgg e 7> My _ .
9 Sp———7 37 ED g s |38 | = ~L Iz
r ep—— X310 eargsg 5 e v8 | qua- = I == £
z 1P 20) d z
— 9 8 =z2a [4 SE| 5 vNOooT+ 1
i gar | 29 g gan —=> vE 4nz -z L
E 118 q Lo €ED 7
2 4 PA] vel ga ' % NId=0ONg J0A §
STn - ad S2 | og I £ NId=00A
&d 92! g |
ve L2l gq ! 29A
€C CER R
IIvMshd 2 e 62 0 | vue-
s og | ;8 vnsoz+ A
od TE _
W STV CERIM ! _
AN =1 2H &
Vo ETV B/YNC =
Cer sy s L <
=TTV OHI \DHI 4]
; T3V S BAN >
\ 9Ly 81 ev | DHI D ——<_XBHT]
_ Y 1 M LVH PoF g |
\’m«lmlml av | IWN pg—234 <IRN]
L sy 13534 p <1353
7 Sv S M 7€
PV =T _
—€v 7 m« | X3 gg JS04NH]
v oT] 2V | ywe- =
TV 5 YNGr T+ T
LoV 8 19" X e
SCEER

savon

LNdNI OUVONVLS

The Computer Journal / #66

Special Feature

Little Circuits

by Dave Baldwin

Now there is a way to send your comments and suggestions to
me about Little Circuits. DIBs BBS went online on Feb. 2,
1994 running Wildcat software operating from 1200 to 14.4Kb.
There is a TCJ conference where you can leave messages. I've
created a special logon that allows you to get directly to the 7CJ
conference and file area. Call (916) 722-5799 and use the
following logon:

First name? <COMPUTER>
Last name? <JOURNAL>
Password? <SUBSCRIBER>

The TCJ download area has a ProComm script for logging on.
There also some phone number lists that might be interesting.
If you also want access to other areas, log on with your own
name and password.

BATTERY BACKUP

When you turn your computer off (or the local power company
turns it off for you), you want your real-time clock to keep
ticking and sometimes you need to keep data in memory for the
next time the computer comes on. All the real-time clock chips
I know of require a battery to keep them running when the
power is off. For non-volatile memory, you can use EEproms,
Flash eproms, or battery backed static rams. EEproms and
Flash eproms require special code to write to them and can’t
be used as normal read/write ram whereas battery backed static
rams operate as regular rams that happen to retain their data
when the power goes away.

I’m covering battery backup circuits this time because they
have a lot in common with the reset circuits I discussed in the
last Little Circuits article. Just like the reset circuits, battery
backup circuits have to operate through the power up and down
cycles and brown-out conditions without losing data and/or
timekeeping. Most of the battery backup circuits include the
same supply voltage sensing circuitry that reset circuits use.

For new designs, you don’t have to design anything. Real-time
clocks and static rams are now available with lithium batteries
built into the package so you can just plug them in to a dip
socket. Chips are available that just plug into existing sockets
for MC146818 real-time clocks and 64kb and 256kb static

44

rams. If you are designing a new system, you should note the
batteries are not replaceable and are rated to last 10 years.
However, they are very convenient. For a real-time clock, I
prefer the Harris (Intersil) ICM7170 because it has circuits for
for an external lithium battery built in.

Older systems, especially those with the National Semiconduc-
tor MM58167A real-time clock, often have flaky battery back-
up circuits,. The MM58167A is probably the most misused
device as far as battery backup is concerned. ['ve seen a
number of circuits that almost work. All the information
needed is in the design guide for the chip. I spent a lot of time
trying to get one to work on a Z80 single board before a friend
gave me a copy of the design guide.

CIRCUIT CONSIDERATIONS

There are three considerations for battery backup circuits. First
is the Vco/Battery switch circuit. Second is glitch prevention
during power supply changes, especially on the “Write’ input.
The third item is power-fail detection. Devices like the 58167A
have a Power down input that needs to be switched at the
proper time.

Power out
to chip +5

(i

saey 1=32] 1210 [z

3
-I-—@ 54€ CEin

There are several IC’s (non-volatile controllers) designed to
provide the battery switch and the glitch prevention. One is the
DS1210 from Dallas Semiconductor, also available as the

The Computer Journal / #66

MXDI1210 from Maxim. The 1210 contains battery switches
for two lithium batteries and a chip-enable gating circuit. The
chip connects the power output pin to the power input pin that
has the highest voltage, whether it’s the regular 5 volt supply
or one of the two batteries. The 1210 also has a voltage level
detector built in that disables the Chip-enable output when the
supply voltage drops too low. The level detector circuit is just
like the reset circuits in the last Little Circuits article. This
time it is used to gate a chip-enable signal instead of providing
a reset signal.

There is an interesting note in the data sheet for the ICM7170.
It says that you need to put a 2K resistor in series with the
lithium battery for UL approval. This is to prevent the battery
from being shorted if the IC fails.

Dallas has other non-volatile controllers with more chip-en-
able outputs. Maxim includes the battery switch circuit in
several of their power-supply monitor IC’s. The MAX693
reset controller mentioned in the last article also includes a
battery switch circuit.

The 1210 is all you need to convert a low-power cmos static to
battery backup and it will provide two of the three required
functions for the 58167A. The two transistor circuit in the next
figure will provide the power-down signal. It can also be used
for a power up/down reset circuit.

Power On/Off Sense
Voo (+5)>
. N?rite a1 :; R2 $ Output
47K < 47K 2 | ow m VoG < 4.5 vdc
HIl = Voo > 4.8 vdc
Optional
RS
manual Input 100
>> 4 & Ra
l Qt Q2 22K
R& 2N3904
100 2N3904
RS i
l 47 =

Q1 and Q2 are connected as a Schmitt trigger. DI, R3, and
RS set the voltage at which the output changes. In my test
circuit, it was about 4.5V. Low voltage Zener diodes like the
IN746 have a very rounded knee voltage curve. The 1N746 is
supposed to be a 3.3V diode, but the one I used in my test circuit
actually measured 3.0V. You may have to specially sclect the
diode or adjust the values of R3 and RS if you use this circuit.
You could also use two red LED's or 1 green LED and adjust
R3 and R5. The 22K resistor on the output is to make sure the
output signal can't float up when the power is off.

If you’re not concerned about glitch protection, the MAX703/

4 contain the battery switch circuit and reset and power fail
outputs you could connect to the 58167A power-down input.

The Computer Journal / #66

The most complete chip I’ve found is the Dallas DS1234. It
gates both the chip-enable and write signals, provides a power
fail output, and does not turn on the battery until you program
it to. You can use this chip in a unit that has to sit on the shelf
for a while before it is used and not use up the lithium battery.

RECHARGEABLE BATTERIES

All of the previous circuits were for lithium batteries which are
low current devices. Sometimes you would prefer to use
rechargeable, re-usable batteries that provide higher load cur-
rents. For printed circuit board mounting, this usually means
nicads and a charging circuit.

Nicad capacity (C) is rated in milliampere-hours, a somewhat
misleading term. Five hours appears to be the standard. A
‘AAA’ cell is typically rated at S00mAh (which is ‘C’) which
means that you can discharge it at 100 mA for five hours before
it’s considered dead. Then the charts in the battery specs show
a curve that ends at six hours. Maybe it’s just conservative
rating. Anyway, the recommended charging currents are based
on the rated capacity.

I’ve heard all kinds of mystical theories on ways to extend the
life of nicads. Ican’t recommend any of them. Some of them,
such as completely discharging the battery by shorting it, are
dangerous. Batteries can explode because excessive high dis-
charge currents heat up the internal resistance of the battery
and cause internal gasses to expand. Besides that, even re-
chargeable batteries wear out after a while.

Nicad charging circuits range from simple half-wave rectifiers
with a series resistor to circuits that sense both temperature and
battery voltage and adjust the charging current automatically.
The standard charging rate is 0.1C (C = capacity) or 50mA for
a 500mAh battery. After the battery is fully charged, trickle-
charging at .02C to .05C is recommended to keep the battery
fully charged. Nicads will self-discharge and go dead without
the trickle-charge.

Nicads are also temperature sensitive. They have 100% of
their rated capacity about 20°C or just below room tempera-
ture. Below and above this temperature, the capacity and
ability to be charged drops. Self-discharge increases with
temperature also, so nicads will stay charged longer at cooler
temperatures.

I don't yet have a charging circuit I can show you that works
from normal computer power supply voltages (+5 and +12).
The one I have been using requires about 7 volts. Maybe I can
slip one in next time.

REFERENCES

Dallas Semiconductor 1992-1993 Product Data Book.
Maxim New Releases Data Book, Volume III, 1994.
Harris Data Aquisition Data Book, 1991.

PowerSonic Nicad battery data sheet.

45

Regular Feature
Classic Support

Group Reviews

SUPPORT GROUPS FOR THE CLASSICS

By JW Weaver

GROUP REVIEW

We received a portion of the Windsor Bulletin Board User's
Group newsletter, courteys of Emmanuel Roche. It seems
Emmanuel contributed in October of last year a complete set
of the now defunct Piconet Library. The contents were mainly
older programs, some of which I know were later updated and
released on the SIGM disks.

The newsletter also indicated that Shane Badham had contrib-
uted his complete PD library. This library contains programs
by Digitial Research at about the time PCDOS was hitting the
market. Since these may be some missing and otherwise not
avaialble programs, the group will be checking them out and
hopefully have them available for release some time this year.
The list of programs available are in volume 121 and can be
obtained from Rodney Hannis, at £3.00 each.

Volumes 117 to 120 contain the Z-System programs and have
been produced by Mark Minting. The newsletters comments
are: "These are designed for Z-S itself but many will run
satisfactorily if you are equipped with at least ZCPR33 and
might even run on vanilla CP/M. In the MSDOS world of 1993
where most programs appear to be sloppily written and to
occupy 100K+ it is very pleasing to find so many very fast
comprehensive programs with lengths of only a few K. If you
have still resisted the temptation to experiment with Z-System
may I tell you that prices in the states have fallen and Mark can
now let you have NZCOM or Z3PLUS complete with several
hundred K of add-ons and a printed manual for just £24.00."

Also listed are Volumes for MSDOS support, and Vol. 34 has
MYZ80 latest release. To properly use MYZ80 with Z-System
you will need NZOM or Z3PLUS. MYZ80 does run CP/M as
shipped. There was also a request for letters to Novel the new
owners of DRI to get GSX-80 into public domain like they did
with GSX-86 (CP/M80 and CP/M86 respectively).

TCJ Staff Contacts

TCJ Editor:

Bill D. Kibler, PO Box 535, Lincoln, CA 95648, (916)645-1670,
GEnie: B.Kibler, CompuServe: 71563,2243, E-mail:
B Kibler@Genie.geis.com.

46

Z-System Support:

Jay Sage, 1435 Centre St. Newton Centre, MA 02159-2469, (617)965-
3552, BBS: (617)965-7259(pw=DDT), MABOS on PC-Pursuit, E-
mail: Sage@!l.mit.edu. Also sells Z-System software.

32Bit Support:
Rick Rodman, BBS:(703)330-9049
rickr@virtech. vti.com.

(eves), E-mail:

Kaypro Support:
Charles Stafford, 4000 Norris Ave., Sacramento, CA 95821, (916)483-
0312 (eves). Also sells Kaypro upgrades, see ad inside back cover.

S-100 Support:
Herb Johnson, CN 5256 #105, Princeton, NJ 08543, (609)771-1503.
Also sells used S-100 boards and systems, see inside back cover.

6809 Support:
Ronald Anderson, 3540 Sturbridge Ct., Ann Arbor, MI 48105.

Users Groups and Project Reports:
JW Weaver, Drawer 180, Volcano, CA 95689, BBS: (916)427-9038.

Regular Contributors:
Dave Baldwin, Voice/FAX (916)722-3877, or DIBs BBS (916) 722-

"oons

5799 (use "computer”, "journal”, pswd "subscriber" as log on).

Brad Rodriguez,Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, L8S 1C0, Canada, Genie: B.Rodriguez2, E-mail:
b.rodriguez2@genie.geis.com.

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX 78666, E-
mail: {507675@academia.swt.edu.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz. uni-siegen.d400.de.
Has complete MS-DOS disk emulation program for CP/M+, contact
Jay Sage.

Helmut Jungkunz, Germany, "Virtual" ZNODE #51, or CompuServe
100024,1545.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold, PO Box
74, Canton CT 06019-0074, BBS: (203)665-1100. Sponsors East
Coast Z-fests.

Sacramento Microcomputer Users Group, PO Box 161513, Sacra-
mento, CA 95816-1513, BBS: (916)372-3646. Publishes newsletter,
$15.00 membership, normal meeting is first Thursday at SMUD
6201 S st., Sacramento CA.

The Computer Journal / #66

CAPDUG: The Capital Area Public Domain Users Group, Newslet-
ter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda MD
20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group, Newslet-
ter $12, Robert L. Crities, 7512 Fairwood Lane, Falls Church, VA
22046. Info (703) 534-1186, BBS use CAPDUG's.

The Windsor Bulletin Board Users' Group: England, Contact Rodney
Hannis, 34 Falmouth Road, Reading, RG2 8QR, or Mark Minting,
94 Undley Common, Lakenheath, Brandon, Suffolk, IP27 9BZ,
Phone 0842-860469 (also sells NZCOM/Z3PLUS).

LIS.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581.

Coleco ADAM:

ADAM-Link User’s Group, Salt Lake City, Utah, BBS: (801)484-
5114. Supporting Coleco ADAM machines, with Newsletter and
BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-5040.
Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934, Fort
Walton Beach FL 32549-4934, (904)244-1516. Contact Norman J.
Deere, treasurer and editor for pricing and newsletter information.

MOAUG, Metro Orlando Adam Users Group, Contact James Poulin,
1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E., Toronto,
ONT MSA INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W. 33rd
Ave. Bellevue NE 68005, (402)291-4405. Suppose to be oldest
ADAM group.

0S-9 Support:
San Diego OS-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

Atari Support:

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews (916)423-1573. Meets first Thurdays at SMUD 59Th St. (ed.
bldg.).

Forth Support:

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-89-
FORTH. International support of the Forth language. Contact for list
of local chapters.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David A.J.
McGlone, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (503)688-3563. Bi-Monthly user oriented
newsletter (20 pages+). Also sells CP/M Boot disks, software.

The Analytical Engine, by the Computer History Association of
California, 1001 Elm Ct. El Cerrito, CA 94530-2602. A ASCII text
file distributed by Internet, issue #1 was July 1993. E-mail:
kcrosby@ecrayola. win.net.

The Computer Journal / #66

Z-100 LifeLine, Steven W. Vagts, 2215 American Drive, Roseville,
CA 95747, (916) 773-4822. Publication for Z-100 (a S-100 ma-
chine).

The Staunch 8/89 'er, Kirk L. Thompson editor, PO Box 548, West
Branch IA 52358, (319)643-7136. $15/yr(US) publication for H-8/
89s.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450 Sky-
line Blvd. Woodside, CA 94062-4541, (415)851-7031. Support for
orphaned Sanyo computers and software.

the world of 68' micros, by FARNA Systems, PO Box 321, Warner
Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com. New maga-
zine for support of old CoCo’s and other 68xx(x) systems.

Amstrad PCW SIG, newsletter by Al Warsh, 2751 Reche Cyn Rd.
#93, Colton, CA 92324. 39 for 6 bi-monthly newsletters on Amstrad
CP/M machines.

Historically Brewed, A publication of the Historical Computer So-
ciety. Bimonthly at $18 a year. HCS, 10928 Ted Williams PL., El
Paso, TX 79934. Editor David Greelish. Computer History and
more.

Other Support Businesses

Sydex, PO Box 5700, Eugene OR 97405, (503)683-6033. Sells
several CP/M programs for use with PC Clones (22Disk' format/
copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423, (805)466-
8440. Sells CP/M user group disks and Amstrad PCW products. See
ad inside back cover.

Davidge Corp. 94 Commerce Dr. PO Box 1869, Buellton CA 93427,
(805)688-9598. Z80 support of Davidge and Ampro Z80 Little
Board.

Star Technology, 900 Road 170, Carbondale CO, 81623. Epson QX-
10 support and repairs. New units also avialble.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY 10549,
(914)241-0287, BBS: (914)241-3307. 6809/68000 operating system
and software. Some educational products, call for catalog.

Peripheral Technology, 1480 Terrell Mill Rd. #870, Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K ISA
bus compatible system. See inside front cover.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffion, Rhineland,
MO 65069, (314)2364372. Some SS-50 6809 boards and new
68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)202-0150. SS-50 6809
boards and systems. Very limited quanity, call for information.

MicroSolutions Computer Products, 132 W. Lincoln Hwy, DeKalb,
IL 60115, (815)756-3411. Make disk copying program for CP/M
systems, that runs on CP/M sytems, UNIFROM Format-translation.
Also PC/280 CompatiCard and UniDos products.

47

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Jum ri:
-issues 110 9

" . Serial interfacing and Modem transfers

- Floppy disk formats, Print spooler.

- Adding 8087 Math Chip, Fiber optics

+ $-100 HI-RES graphics.

- Controlling DC motors, Multi-user
column.

- VIC-20 EPROM Programmer, CP/M 3.0.

< CPM user functions and integration.

Volum: rg:

- issues 10to 19

- Forth tutorial and Write Your Own.

- 68008 CPU for §-100.

- RPM vs CP/M, BIOS Enhancements.
- Poor Man's Distributed Processing.
« Controlling Apple Stepper Motors.

- Facsimile Pictures on a Micro.

- Memory Mapped 1/O on a 2X81.

Volume Number 3:

- Issues 20 to 25

- Designing an 8035 SBC

- Using Apple Graphics from CP/M

- Soldering & Other Strange Tales

- Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

- Extending Turbo Pascal: series

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

- Programming the 8035 SBC

- NEW-DOS: series

- Variability in the BDS C Standard Library

- The SCSI interface: series

- Using Turbo Pascal ISAM Files

- The Ampro Littie Board Column: series

- C Column: series

- The Z Column: series

- The SCSI Interface: Introduction to SCS!

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create
an index

- Selecting & Building a Systern

- - Introduction to Assemble Code for CP/M

- Ampro 188 Column
- ZTime-1: A Real Time Ciock for the Ampro
2-80 Little Board

Volume Number 4:
- lssues 26 to 31
- Bus Systems: Selecting a System Bus
- Using the SB180 Real Time Clock
- The SCSI Interface: Software for the SCSt
Adapter
- Inside Ampro Computers

NEW-DOS: The CCP Commands
(continued)
- ZSIG Comer
- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS
- 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System
- The Art of Source Code Generation:
Disassembling Z-80 Software
- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation
-"The C Column: A Graphics Primitive
Package
- The Hitachi HD684180: New Life for 8-bit
Systems
- ZSIG Corner: Command Line Generators
and Aliases
- A Tutor Program in Forth: Writing a Forth
Tutor in Forth
- Disk Parameters. Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats
- Starting Your Own BBS
- Build an A/D Converter for the Ampro Little
Board
- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA
- Using SCSI for Real Time Control
- Open Letter to STD Bus Manufacturers
- Patching Turbo Pascal
- Choosing a Language for Machine Controt

- Better Software Fitter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 88000: Why use a new OS and the 630007
- Detecting the 8087 Math Chip

- Floppy Disk Track Structure

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board

- 3200 Hackers' Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Lilliput Z-Node

- Using SCSI for Generalized /O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-OS ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System

Program
- The ZCPR3 Corner: ARUNZ Documentation

Issue Number 32:

Language Development: Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the Z81
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB
- WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
- The ZCPR3 Comer: NZCOM and ZCPR34

Issue Number 33;

- Data File Conversion: Writing a Filter to
Convert Foreign File Formats

- Advanced CP/M: ZCPR3PLUS & How to
Write Self Reiocating Code

- DataBase: The First in a Series on Data
Bases and Information Processing

- SCSI for the S-100 Bus: Ancther Example
of SCSI's Versatility

- A Mouse on any Hardware: Implementing
the Mouse on a 280 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Encryption System.

- Database: A continuation of the data base
primer series.

- A Simple Multitasking Executive: Designing
an embedded controller multitasking
executive.

- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

- Macintosh Data File Conversion in Turbo
Pascal.

Issue Number 3%

- All This & Modula-2: A Pascal-like
alternative with scope and parameter passing.
- A Short Course in Source Code Generation:
Disassembling 8088 software to produce
modifiable assem. source code.

- Real Computing: The NS32032.

- §-100: EPRCOM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, pius
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

issue Number 36:

- Information Engineering: introduction.

- Modula-2: A list of reference books.

- Temperature Measurement & Control:
Agricultural computer application.

- ZCPR3 Corner. Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CPIM:
programming.

Environmental

Issue Number 37;

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- ZCPR3 Corner. Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M: Raw and cooked console
Q.

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating System:
Part 1.

Issue Number 38:

- C Math: Handling Dollars and Cents With
C.

- Advanced CP/M: Batch Processing and a
New ZEX.

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

- Information Engineering: The portable
Information Age.

- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

- Shells: ZEX and hard disk backups.

- Real Computing: The National
Semiconductor NS320XX.

- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

Issue Number 40:

- Programming the LaserJet: Using the
escape codes.

- Beginning Forth Column: Introduction.

- Advanced Forth Column: Variant Records
and Modules.

- LINKPRL: Generating the bit maps for PRL
files from a REL file.

- WordTech's dBXL: Writing your own
custom designed business program.

System

- Advanced CP/M: ZEX 5.0xThe machine
and the language.

- Programming for Performance. Assembly
language techniques.

- Programming Input/Output With C:
Keyboard and screen functions.

- The Z-System Corner. Remote access
systems and BDS C.

- Real Computing: The NS320XX

issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.

- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

 How to add Data Structures in Forth

- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.

- The Z-System Corner: Extended Muitiple
Command Line, and aliases.

- Programming disk and printer functions
with C.

- LINKPRL: Making RSXes easy.

- SCOPY: Copying a series of unrelated
fites.

Issue Number 42:

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

- Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

- Forth Column: Lists and object oriented
Forth.

- The Z-System Corner: Genie, BDS Z and
Z-System Fundamentais.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000.

Issue Number 43:
- Standardize Your Floppy Disk Drives.
- A New History Shell for ZSystem.

Heath's HDOS, Then and Now.
- The ZSystem Corner. Software update
service, and customizing NZCOM.
- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

Lazy Evaluation: End the evaluation as
soon as the result is known.
- 8-100: There's still life in the old bus
- Advanced CP/M: Passing parameters, and
complex error recovery.

Reat Computing: The NS32000.

Issue Number 44
- Animation with Turbo C Part 1: The Basic
Tools.
- Multitasking in Forth: New Micros F68FC11
and Max Forth.

Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.
- DosDisk: MS-DOS disk format emulator for
CP/M.
- Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.
- Real Computing: The NS32000.

Forth Column: Handling Strings.

Z-System Corner: MEX and teiecommuni-
cations.

Issue Number 45:

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

The Z-System Corner: Using scripts with
MEX.
- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.
- Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.
- Advanced CP/M: String searches and
tuning Jetfind.
- Animation with Turbo C: Part 2, screen
interactions.
- Real Computing: The NS32000.
- The Computer Corner.

The Computer Journal / #66

Issue Number 46:
- Build a Long Distance Printer Driver.

Using the 8031's built-in UART for seral
communications.
- Foundational Modules in Modula 2.
- The Z-System Corner. Patching The Word
Plus spell checker, and the ZMATE macro
text editor.
- Animation with Turbo C. Text in the
graphics mode.
- 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

Issue Number 47:

- Controlling Stepper Motors with the
B68HC11F

- Z-System Corner: ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: interfacing to the
68HC705

- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-SOG 90

- The Computer Corner

issue Number 48:

- Fast Math Using Logarithms

- Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCSI Interface)

- Review of BDS 2"

- PMATE/ZMATE Macros, Pt. 1

- Real Computing

- Z-System Comer: Patching MEX-Plus and
TheWord, Using ZEX

- Z-Best Software

- The Computer Corner

Issue Number 49;

- Computer Network Power Protection

- Floppy Disk Alignment w/RTXEB, Pt. 1
- Motor Control with the F68HC11

- Controlling Home Heating & Lighting, Pt. 1
- Getting Started in Assembly Language
- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Z2-System Comer

- Z-Best Software

- The Computer Corner

issue Number 30:

- Offload a System CPU with the Z181

- Floppy Disk Alignment w/RTXES, Pt. 2
- Motor Control with the FE8HC11

The Computer Journal Back Issues

Issue Number 51:

- Introducing the YASBEC
Floppy Disk Alignment w/RTXEB, Pt 3

- High Speed Modems on Eight Bit Systems
A 28 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Table

- A Short Introduction to Forth

- Stepped Inference as a Technique for

Intelligent Real-Time Embedded Contro!

- Real Computing, the 32CG160, Swordfish,

DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number $2:
- YASBEC, The Hardware
- An Arbitrary Waveform Generator, Pt. 1
B.Y.O. Assembler...in Forth
- Getting Started in Assembly Language, Pt. 3
- The NZCOM 10P
Servos and the F68HC11
Z-System Corner, Programming for
Compatibility
- Z-Best Software
Real Computing, X10 Revisited
- PMATE/ZMATE Macros
- Controlling Home Heating & Lighting, Pt. 3
- The CPU280, A High Performance Single-
Board Computer
- The Computer Corner

issue Number $3:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest '91
- Z-System Corner
- Getting Started in Assembly Language
- The NZCOM I10P
- Z-BEST Software
- The Computer Corner

Issue Number 54:
- Z-System Corner
- B.Y.O. Assembler
Local Area Networks
- Advanced CP/M
- ZCPR on a 16-Bit intel Piatform
- Real Computing
- Interrupts and the Z80
- 8 MHZ on a Ampro
- Hardware Heavenn

Z-System Corner
- Hardware Heaven
- Real Computing
- Remapping Disk Drives through the Virtual
BIOS
- The Bumbling Mathmatician
- YASMEM
- Z-BEST Software
The Computer Corner

Issue Number 56:
- TCJ - The Next Ten Years

- Input Expansion for 8031
- Connecting IDE Drives to 8-Bit Systems
- Real Computing
8 Queens in Forth
- Z-System Corner
- Kaypro-84 Direct File Transfers
Analog Signal Generation
- The Computer Corner

Issue Number §7:

Home Automation with X10
- File Transfer Protocols
- MDISK at 8 MHZ
- Real Computing
- Shell Sort in Forth
- Z-System Corner
+ Introduction to Forth
- OR. §-100
- Z AT Last!
* The Computer Corner

Issue Number 58:
- Multitasking Forth
- Computing Timer Values
- Affordable Development Tools
- Real Computing
- Z-System Corner
Mr. Kaypro
-DR. 8-100
The Computer Corner

Issue Number 89:
- Moving Forth
Center Fold IMSAI MPU-A
- Developing Forth Applications
- Real Computing
- Z-System Corner
- Mr. Kaypro Review
DR. S-100
- The Computer Corner

Issue Number 60:
Moving Forth Part Il
- Center Fold IMSAI CPA

Issue Number 61:

- Multiprocessing 6809 part |
Center Fold XEROX 820

- Quality Control

- Real Computing

- Support Groups for Classics
Z-System Corner

- Operating Systems - CP/M

- Mr. Kaypro SMHZ
The Computer Corner

Is mber 62:
SCSI EPROM Programmer
Center Fold XEROX 820

- DR $-100

- Real Computing
Moving Forth part (il

- Z-System Corner
Programming the 8526 CIA

- Reminiscing and Musings

- Modem Scripts

Issue Number 63:
SCSI| EPROM Programmer part It
- Center Fold XEROX 820
- DR S-100
- Real Computing
- Multiprocessing Part Il
- Z-System Corner
- 8809 Operating Systems
- Reminiscing and Musings
IDE Orives Part Il

Issue Number 64;
- Smaili-C?

- Center Fold last XEROX 820
DR S-100

- Real Computing

- Moving Forth Part IV

- Z-System Comer
Small Systems

- Mr. Kaypro

- IDE Drives Part it

issue Number 65:

- Small System Support
Center Fold ZX80/81

- DR $-100

- Real Computing

- European Beat

- PCIXT Corner

- Little Circuits

- Levels of Forth

- Sinclair ZX81

SPECIAL DISCOUNT

r

- Modula-2 and the Command Line i " - Four for Forth
- Controlling Home Heating & Lighting, Pt. 2 m":g;':r'; Mot iora ¥ou about the Superd . Reai Computing 15% on cost of Back Issues when
 Getting Started in Assembly Language Pt2 yy heieiooment of TDOS - Debugging Forth . buying from 1 to Current Issue or all
- Local Area Networks - The Computer Corner - Support Groups for Classics
- Using the ZCPR3 IOP P - Z-System Corner four volumes.
- PMATE/ZMATE Macros, Pt 3 Issue Number 55: - Mr. Kaypro Review 10% on cost of Back Issues when
2 Comer, PCED v - DR. S-100 ; :
A % ::“’g‘om g Fuzzilogy 101 0 e Ca buying 10 or more issues.
-Best are - The Cyclic Redundancy Check in Forth e Lomputer Lorner
- Real Computing, 32FX16, Caches The Internetwork Protocol (iP)
u.s. Canada/Mexico Europe/Other \
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:

\.

oo/

Payment is accepted by check, money order, or Credit Card (M/C,
VISA, CarteBlanche, Diners Club). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1({800) 424-8825.

TC.J-1he Computer Journal

P.O. Box 5§35, Lincoln, CA 95648-0535
Phone (916) 645-1670

1year (6 issues) $2400 $3200 $34.00 $34.00 $44.00 Address:
2years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$300 +$350 +$650 +$400 +$17.00
#20 thru #43 are $3.00 ea. +$1.00 +$1.00 +$125 +$150 +$250
#44andup are$4.00ea. +$125 +$125 +$175 +$200 +$3s0 Credit Card # g
Software Disks (CA tax) add these shipping costs for each 3 disks ordered
MicroC Disks are $6.00ea +$1.00 +$1.00 +$125 +3150 +$250
tems: Back Issues Total
MicroC Disks Total
California state Residents add 7.25% Sales TAX
Subscription Total
Total Enclosed

The Computer Journal / #66

49

TCJ CLASSIFIED

- Needed: Manuals for IMS Corp. 518-
W12-10H60, has 10 meg HD. S-100 with
720K 5 1/4in drives running IMS CP/M
2.24]. Robert Edgecombe, 9546 Los
Palos Rd. Atascadero, CA 93422.

Needed: Information on MEGATEL
QUARK single board computer. This is
a Canadian Z80 based CP/M Plus sys-
tem. Peter W. Borders, 1350 Sunset Dr.
Norfolk, VA 23503. P.Borders on GE-
NIE or 71170,77 CompuServe.

Kaypro CPM hardware and software.
Plenty of it. Cheap. Send #10 SASE for
list. Mike Arman, Box 785, Ormond
Beach FL 32175 (904) 673-5576, FAX
(904) 673-6560.

OPTICAL PHOTOTYPESETTER!
AM-Varityper Model 3510, complete,
working. Only $500, was $20,000 new.
Four 8 inch hard sectored disk drives,

dozens of fonts, sets 4 pt. to 72 pt. type,
monitor, processor, dryer, spare parts,
complete schematics, all manuals, full
lenses, motors, much more, a real trea-
sure trove. This things weighs almost
500 pounds. Use it to set type, or tear it
apart for the time of your life. (904) 673-
5576, Fax (904) 673-6560.

Avaialble: MicroC Kaypro Disks,
MicroC Back Issues and legal copies of
CP/M, and more. Many bootable CP/M
disk formats avaialble. Disk copying,
most formats inculding Apple CP/M.
Manuals and more! Lambda Software
Publishing, 149 West Hilliard Lane, Eu-
gene, OR 97404-3057, (503) 688-3563.

NEW CLASSIFIED RATES!

NOW $5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+

Full $120 $90
1/2 Page $75 $60
1/3 Page $60 $45
1/4 Page $50 $40

Market Place $25 $100/yr

Send your items to:
The Computer Journal

P.O. Box 535
Lincoln, CA 95648-0535

X

- Reader to Reader continued;

I need a way to copy thie data on these
diks to ANY CPM or DOS format, from
which I will then be able to import the
files into the system I'm using now. These
8 in disks use a proprictary format of 24
sectors of 12K keystrokes per sector. 1
believe the capacity of the disks is 188K,
but I'm not sure. The operating system is
pre-CP/M, but uses an 8 bit bus.

I have several of the correct 8 inch drives
available, and can provide the required
power to them (5,12,24, and 117 Volts!),
but the drive controller is on two large
cards with several dozen chips each, and
plugs into another strange and wonder-
ful bus interface.

1 also have available several Kaypro 2, 4,
and 10s, and all kinds of DOS stuff. Is
there anty way I can trick the Kaypro
controller into thinking that it really does

50

want to talk to an 8 inch hard sectored
drive? Unfortunately, the typesetter has
no serial port, so that avenue is closed.

There are two or three places offering
disk conversion, but they all act like they
are doing me a great big favor by charg-
ing me lots of money. Any help would be
appreciated.

Mike Arman, Ormond, FL.

OK Mike, sounds like a good problem. 1
doubt that the Kaypro could help with-
out some major ROM changes. It is pos-
sible to do some full track reads that
would give you the data plus the disk
information. Later a large amount of
editing would be needed to pull out your
data.

Have you talked to Lambda, David does
disk copying at reasonable rates and
can do hard sector I think. The getting

the correct format sounds like the real
problem, as you really just want your
data files and not everything else. That
means whoever copies the disks must
know or have a similar system, a real
problem if they were pre-CP/M.

If the data is real valuable then what-
ever the cost someone who can do it
charges will be cheaper than not getting
it at all. Let us know what happened.
Thanks. Bill Kibler.

Send your letters to:
The Computer Journal

P.O. Box 535
Lincoln, CA 95648-0535

The Computer Journal / #66

The Computer Corner

By Bill Kibler

What is A PLC?

Since my column of last month stated I
now work on PLC’s, several people have
asked what that means. Since we are
here to teach and enlighten here is an
explanation of what a PLC is.

A Computer

PLC’s are simply computers used for
industrial control. What does PLC stand
for? Programmable Logic Controller.
The idea is to be able to change the flow
of operations with simple keystrokes and
not physically ‘‘re-wire’’ the control cir-
cuit.

Since even that explanation might be a
bit vague for many, lets start from the
top. Industrial electric circuits are con-
trolled by a ladder logic of wiring. Your
house wiring is in the form of a ladder.
Each circuit has a separate rung. Indus-
trial controls are just the same.

A simple Ladder Circuit

Let us take your house and look at a
bedroom. The bedroom has a light
switch, that is used to control the lights.
Now most people who have any idea of
the wiring would not call this a ladder
circuit, but it is. If we were to draw it in
an industrial or theoretical manner, it
would look like this:

Switch

Hot GND

Now the wires, and this is where most
people get confused, are usually inside
one outer jacket. So when the electrician
wires the circuits both the Ground wire

The Computer Journal / #66

(GND) and the Hot wire or 120V are
side by side in one cable. Like this:

(light)
Pz
. 0
Hot Switch

GND

Since the ground is the same potential it
is convenient to draw it as one single
path. The same is true for the hot side.
The important item here is the need for
the appliance or light to be connected
between the two sides. Electricity flows
from the hot side to ground given a com-
pleted path (hopefully not your body).
Our simple diagram shows a light switch,
that when closed connects the hot side to
one side of the light bulb. Since the other
is grounded, your light will be on.

We can expand this idea in an industrial
environment, by making the light, a
motor, a pump, or a whole series of
devices. The switch can be sensors that
detect a low condition in a water storage
tank, and thus would activate the pump
to fill it back up. The average washing
machine has a similar ladder diagram
where the timer switch will activate vari-
ous operations in a given sequence. There
will also be safety features, such as not
allowing you to spin your cloths if the lid
is open.

For many years these operations have
been done by using relays, switches, and
other mechanical devices. I worked on
many ladder logic layouts, that were
composed of relays and massive bundles
of wires going and coming from the
different devices. To make a change in
the process would require a physical

change in the wiring and maybe even a
different type of relay or switch. I need
not really comment on the problems
associated with mechanical devices as I
am sure everyone has had some switch
or control fail on them more than once.

The industrial wizards that be, figured
that a computer could then replace all
these physical devices and one would
only need inputs and outputs to and from
the computer. Since most industrial tech-
nicians were use to and understood lad-
der logic designs, the program devel-
oped to control these computers was
programmed in ladder Logic as well.
Thus the name programmable logic con-
trollers.

The program is entered by actually plac-
ing input, usually a reference number
(actually a memory bit) on one side of
the ladder and placing the output num-
ber (again a memory bit, only this one
associated with an output device) on the
other. The display device would connect
a line between the devices as shown
below:

| |

|-(501)----<801>-|

| I
To have a delay from the time the switch
is closed and power is actually applied
the circuit would look like this:

| |

|-(501)--[TimO1]-|

| [#0010] |

| |

[-(T01)----<801>-|

| |
The delay is indicated by the #0010, or
1 second of delay with a resolution of
tenth of seconds. Before PLC’s you would
need to changed the relay from a regular
normally open to a delay on close relay.
Generally the time is fixed, or an adjust-

51

able screw on the top varied the amount
of time, and seldom with .1 second accu-

racy.

Since working on the PLC, I have had a
chance to think about what is actually
going on. The computer that runs the
PLC has several loops which it goes
through. The primary loop goes some-
thing like this; Check input ports/de-
vices and make memory location be same
state (O=off, 1=On); Step through ladder
program; Make output ports/devices
same state as memory bit values.

The internal layout of a PLC is some-
thing like this; A memory or /O ad-
dressed input and output array of devices
(these are the signals in and out from the
PLC); A program memory area to con-
tain the user program; A memory map
representing the actual I/O devices
(maybe arranged differently than actual
devices i.c. 8 bit versus 16 bit); A memory
area containing the supervisory PLC
program.

When running the PLC program, it
checks inputs, then does the program
you have entered, changes outputs and
sends the signals back out. The actual
testing of ladder rungs is very simple
and somewhat Forth like. The machine
I use is very much like most machine
currently in the industry. Ladders have
become very complex as they often end
up talking to regular computers.

To allow for more complex operations,
extended instruction are provided that
perform normal AND, OR and Data
Move type operations. To enter those
you use a mnemonic mode or a very
word (Forth like) instruction. ‘‘LOAD”’
means to test or get the status of a given
input or bit, as in ““LOAD 501°’. I imag-
ine this gets the bit and leaves it on the
stack or at least the status of it (zero or
non-zero). You then have a ““OUT 801"’
instruction which most likely sees if the
stack is zero or not and if not zero makes
the location *‘801’’ active or ON,

This part is so simple and straight for-
ward I feel I could take almost any Forth
and turn it into a PLC in about half a
day. Now of course there are some more
complex instructions and operations than

52

those I listed and they might give me a
bit of trouble. But what I wanted to cover
was the basic concept and operation and
leave implementation to PLC makers.

How these PLC’s actually do what they
do is very much a secret. We are inter-
facing serial (RS 485) devices to the
PLC using an ASCII/BASIC module.
The main idea of the BASIC interface
module is to be able to output text strings
to monitors and display devices. This
replaces the ‘‘now what does that blink-
ing light mean” with a real display that
says ‘‘PARTS FALLING OFF ASSEM-
BLY LINE!!!!”’ In our case we want to
do much more than that and there in
comes the problem.

The PLC is very good, but it is made in
Japan and as such that is where all the
inside information about the interface is
kept. We would like to do some real
machine level interfacing, but the inter-
face between the BASIC module and the
PLC is very convoluted and you can only

use their supplied instructions. Needless
to say their instructions will not do it the
way we need to do it.

What this reminds me of is how I got
into Forth. Many years ago I was in a
similar situation, needing to do things
that BASIC just wouldn’t let you do. I
did eventually figure a way around BA-
SIC, but it was so much a mess, I figured
there had to be a better way. I tried many
options and found only Forth really had
the power and tools I wanted. That then
was how and why I started using Forth.
I just wish PLC companies would openly
use Forth instead of the BASIC they
often provide.

Next Time

Hopefully I have filled in a little about
PLCs and their operation. If your tasks
are simple and straight forward, PLC’s
are very easy to deal with and many
times simpler than learning a computer
language. Till next time, keep hacking
that hardware.

START STOP
. -_L_
M-1
______4 P_______

M-1

RELAY LADDER SCHEMATIC

IF THE STOP BUTTON IS DEPRESSED, TURN THE STARTER OFF. OTHERWISE,

IF THE STARTER BUTTON IS DEPRESSED, TURN THE STARTER ON. OTHERWISE

LEAVE THE STARTER IN ITS PRESENT STATE.
ENGLISH DESCRIPTION

180 INPUT A *PUSHBUTTON START’
20 INPUT B 'PUSHBUTTICN STOP®
30 IF A=1 AND B=] TREN C=1

48 IF B=@ THEN (=D

58 OUTPUT C
8@ GO TO 12

COMPUTER PROGRAM

PUSHBUTTON
START | LNPUTS

PUSHBUTTON
STOP [INPUT

MOTOR

)
>)

OUTPUT > gTARTER

SOLID STATE LOGIC

PUSHBUTTON PUSHBUTTON MOTOR
START STOP STARTER
L |)
1 rg3 O
10001 19992 200!
MOTOR
STARTER
It
s
20e0!
PC PROGRAM

Examples of controlling a motor, from PROGRAMMABLE CONTROLLER HAND-
BOOK, by Robert E. Wilhelm, Jr., from Hayden Books, ISBN 0-8104-6311-3.

The Computer Journal / #66

TC ’ The Computer Journal

Discover
The Z-Letter
The Z-letter is the only publication
exclusively for CP/M and the Z-System.
Eagle computers and Spellbinder support.
Licensed CP/M distributor.

Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call for
free sample.
The Z-Letter
Lambda Software Publishing
149 West Hilliard Lane
Eugene, OR 97404-3057
(503) 688-3563

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves, weekends or write
Chuck Stafford
4000 Norris Ave.
Sacramento, CA 95821

(TCJ MARKET PLACE)
Advertising for small business
First insertion: $25
Reinsertion: $20
Full Six issues $100
Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,
Carte Blanche accepted.
Checks, money orders must be
US funds. Resetting of ad
consitutes a new advertisement
at first time insertion rates.
Mail ad or contact
The Computer Journal
P.O. Box 838
Lincoln, CA 98648-0538

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $§19.95
plus 83.00 shipping and handling. Also, MS/PC-DOS Soft-

! ware. Disk Copying, including AMSTRAD. Send self addressed,
| stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

S-100/1€€€-696

IMSAl Altair
Compupro Morrow

Cromemco

and morel

J S T T e e S TR aT]

Cards« Docs - Systems

Dl‘ [} S"Ioo

Herb Johnson,
CN 5256 #1065,
Princeton, NJ 08543
(609) 771-1503

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Gilen B. Haydon, M.D.

Route 2 Box 429
La Honda, CA 94020

(415) 747 0760

\. J

NEW MAGAZINE

the world of 68' micros

supporting
Tandy Color Computer
0S5-9 & OSK

$23/year for 8 issues

$30/year Canada/Mexico
$35/year overseas

Published by:
FARNA Systems
P.O. Box 321

Warner Robins
GA 31099-0321

PCB's in Minutes
From LascerPrint!*

gi1/g"x11" * Or Photocopier
Sheets Use household
100% MBG iron to apply.

PnP BLUE - Paf III€I'

for High I%' sion '
Professional Layouts Oudl
1. LaserPrint 1.
2. lron-On 2. lron-On
3. Peel-Off 3. Soak-Off uw/ Water
4. €tch 4, €ch
An €xtra Layer of Resist Transfers Laser or
for Super Fine Traces Coplu Towr as ﬂeslst

20Sh$30/40Sh350/100Sh$100 Blue/Wet (No Mix) |
Somple Pack 5 Shts Biue + 5 Shts Wet $20
VISAMCIPOICHIMO $4 S&H - nd Doy Mall

Techniks Inc. P.O. Box 463 Ringoes NJ 08551

(908)788-8249

BASIC Stamp
$39 single-board computer runs BASIC

low-cost parts.

» BASIC language includes instructions for serial 1/0, PWM,
potentiometer input, pulse measurement, button
debounce, tone generation, etc.

» Has 8 digital 1/0 lines, each programmable as an input or
output. Any line can be used for any purpose.

* Small prototyping area provides space for connecting
signals and extra components.

o Powered by 5-12 VDC or 9-volt battery.

DAL AX ?

hd - eBooto
o %[ﬂ Heereey Radio Shack

- 1200000 Thermistor

ﬁ 233508 The Stamp can measure
O Tosoooe —|— OwF - resistance with just a few

Helpful application notes Ea
show you how to connect o-svin >—Fy MG ol
common I/0 devices, such o 00 5—
as A/D converters. G0 veet [l—

o1

T sevecel L_asv—> semia
o sseese| v T
ssses
=

Consumes just 2 mA (typical) or 20 pA (sleep).

Special cable connects Stamp to PC parallel port for

programming.

Programming Package includes PC cable, software,
manual, and technical help for $99.

individual Stamps may be purchased for $39.
Requires 8086-based PC (or better) with 3.5” disk drive.

Parallax, Inc. « 3805 Atherton Road, #102 » Rocklin, CA 95765 « USA
(916) 624-8333 » Fax: 624-8003 « BBS: 624-7101

TCJ Post Office Box 535

Lincoln, CA 95648-0535
United States

ADDRESS CORRECTION REQUESTED
FORWARDING AND RETURN POSTAGE

GUARANTEED

Telephone: (916) 645-1670

BULK RATE
US POSTAGE
PAID
Lincoln, CA
PERMIT NO. 91

Lt s

s s i

oo sl bt S0l 1A . G

